Coaxial 3D bioprinting of tri‐polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co‐culture models

3D生物打印 材料科学 明胶 生物医学工程 组织工程 自愈水凝胶 生物物理学 化学 生物 生物化学 高分子化学 医学
作者
Fahimeh Shahabipour,Maryam Tavafoghi,George E. Aninwene,Shahin Bonakdar,Reza Kazemi Oskuee,Mohammad Ali Shokrgozar,Tyler Potyondy,Farshid Alambeigi,Samad Ahadian
出处
期刊:Journal of Biomedical Materials Research Part A [Wiley]
卷期号:110 (5): 1077-1089 被引量:18
标识
DOI:10.1002/jbm.a.37354
摘要

The crosstalk between osteoblasts and endothelial cells is critical for bone vascularization and regeneration. Here, we used a coaxial 3D bioprinting method to directly print an osteon-like structure by depositing angiogenic and osteogenic bioinks from the core and shell regions of the coaxial nozzle, respectively. The bioinks were made up of gelatin, gelatin methacryloyl (GelMA), alginate, and hydroxyapatite (HAp) nanoparticles and were loaded with human umbilical vascular endothelial cells (HUVECs) and osteoblasts (MC3T3) in the core and shell regions, respectively. Conventional monoaxial 3D bioprinting was used as a control method, where the hydrogels, HAp nanoparticles, MC3T3 cells, and HUVECs were all mixed in one bioink and printed from the core nozzle. As a result, the bioprinted scaffolds were composed of cell-laden fibers with either a core-shell or homogenous structure, providing a non-contact (indirect) or contact (direct) co-culture of MC3T3 cells and HUVECs, respectively. Both structures supported the 3D culture of HUVECs and osteoblasts over a long period. The scaffolds also supported the expression of osteogenic and angiogenic factors. However, the gene expression was significantly higher for the core-shell structure than the homogeneous structure due to the well-defined distribution of osteoblasts and endothelial cells and the formation of vessel-like structures in the co-culture system. Our results indicated that the coaxial bioprinting technique, with the ability to create a non-contact co-culture of cells, can provide a more efficient bioprinting strategy for printing highly vascularized and bioactive bone structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
bukeshuo发布了新的文献求助10
3秒前
宋十一发布了新的文献求助10
4秒前
5秒前
谦让傲菡完成签到,获得积分10
5秒前
yangts2021关注了科研通微信公众号
5秒前
MZ驳回了充电宝应助
6秒前
orixero应助危机的友绿采纳,获得10
6秒前
幽默的鸽子完成签到,获得积分10
6秒前
yue发布了新的文献求助10
7秒前
8秒前
crazyatai完成签到,获得积分10
9秒前
gao1完成签到,获得积分20
11秒前
11秒前
11秒前
黑囡完成签到,获得积分10
11秒前
辛勤雨柏完成签到,获得积分10
13秒前
binz完成签到,获得积分10
14秒前
16秒前
17秒前
飞翔的西红柿完成签到,获得积分10
19秒前
yue完成签到,获得积分10
20秒前
思源应助你真是拿个啊采纳,获得10
21秒前
淡淡的幻竹完成签到,获得积分10
22秒前
烟花应助落寞的以冬采纳,获得10
23秒前
XNDDY完成签到,获得积分10
25秒前
25秒前
666发布了新的文献求助10
27秒前
27秒前
28秒前
Singularity举报任无血求助涉嫌违规
29秒前
29秒前
栀子完成签到 ,获得积分10
30秒前
唯梦发布了新的文献求助10
30秒前
31秒前
waterimagic2发布了新的文献求助10
32秒前
眯眯眼的青文完成签到,获得积分10
32秒前
34秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
胶体中的相变和自组装 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071089
求助须知:如何正确求助?哪些是违规求助? 2725137
关于积分的说明 7488546
捐赠科研通 2372401
什么是DOI,文献DOI怎么找? 1257968
科研通“疑难数据库(出版商)”最低求助积分说明 610164
版权声明 596906