Coaxial 3D bioprinting of tri‐polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co‐culture models

3D生物打印 材料科学 明胶 生物医学工程 组织工程 自愈水凝胶 生物物理学 化学 生物 生物化学 高分子化学 医学
作者
Fahimeh Shahabipour,Maryam Tavafoghi,George E. Aninwene,Shahin Bonakdar,Reza Kazemi Oskuee,Mohammad Ali Shokrgozar,Tyler Potyondy,Farshid Alambeigi,Samad Ahadian
出处
期刊:Journal of Biomedical Materials Research Part A [Wiley]
卷期号:110 (5): 1077-1089 被引量:21
标识
DOI:10.1002/jbm.a.37354
摘要

Abstract The crosstalk between osteoblasts and endothelial cells is critical for bone vascularization and regeneration. Here, we used a coaxial 3D bioprinting method to directly print an osteon‐like structure by depositing angiogenic and osteogenic bioinks from the core and shell regions of the coaxial nozzle, respectively. The bioinks were made up of gelatin, gelatin methacryloyl (GelMA), alginate, and hydroxyapatite (HAp) nanoparticles and were loaded with human umbilical vascular endothelial cells (HUVECs) and osteoblasts (MC3T3) in the core and shell regions, respectively. Conventional monoaxial 3D bioprinting was used as a control method, where the hydrogels, HAp nanoparticles, MC3T3 cells, and HUVECs were all mixed in one bioink and printed from the core nozzle. As a result, the bioprinted scaffolds were composed of cell‐laden fibers with either a core‐shell or homogenous structure, providing a non‐contact (indirect) or contact (direct) co‐culture of MC3T3 cells and HUVECs, respectively. Both structures supported the 3D culture of HUVECs and osteoblasts over a long period. The scaffolds also supported the expression of osteogenic and angiogenic factors. However, the gene expression was significantly higher for the core‐shell structure than the homogeneous structure due to the well‐defined distribution of osteoblasts and endothelial cells and the formation of vessel‐like structures in the co‐culture system. Our results indicated that the coaxial bioprinting technique, with the ability to create a non‐contact co‐culture of cells, can provide a more efficient bioprinting strategy for printing highly vascularized and bioactive bone structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许阿九发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
5秒前
遁地大乔治完成签到,获得积分10
5秒前
郑小凝发布了新的文献求助10
5秒前
悦耳的城完成签到,获得积分10
6秒前
6秒前
6秒前
酷酷豪完成签到,获得积分10
6秒前
李健的粉丝团团长应助111采纳,获得10
7秒前
可爱的函函应助messi采纳,获得10
7秒前
宣尔槐发布了新的文献求助10
8秒前
禾几发布了新的文献求助10
9秒前
9秒前
臭臭发布了新的文献求助10
10秒前
烟花应助windows采纳,获得10
10秒前
yiqingfen完成签到,获得积分20
11秒前
许阿九完成签到,获得积分10
11秒前
优雅的数据线完成签到,获得积分10
11秒前
12秒前
华仔应助穆小菜采纳,获得30
13秒前
ding应助年轻的馒头采纳,获得10
13秒前
13秒前
小学猹发布了新的文献求助10
14秒前
15秒前
15秒前
上海丁辉人应助许阿九采纳,获得10
15秒前
赘婿应助起名字好难采纳,获得10
16秒前
禾几完成签到,获得积分10
16秒前
Rainbow发布了新的文献求助10
17秒前
sxy完成签到,获得积分10
18秒前
111发布了新的文献求助10
19秒前
七分饱完成签到,获得积分10
19秒前
鲜于冰彤发布了新的文献求助10
20秒前
ONE完成签到,获得积分10
22秒前
迢迢笙箫应助麻了采纳,获得10
23秒前
缓慢方盒完成签到,获得积分10
23秒前
北雨完成签到,获得积分10
23秒前
wwiee应助Yuuuu采纳,获得10
24秒前
老迟到的大有完成签到 ,获得积分10
24秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149617
求助须知:如何正确求助?哪些是违规求助? 2800663
关于积分的说明 7841201
捐赠科研通 2458229
什么是DOI,文献DOI怎么找? 1308357
科研通“疑难数据库(出版商)”最低求助积分说明 628479
版权声明 601706