Moisture contents and product quality prediction of Pu‐erh tea in sun‐drying process with image information and environmental parameters

芳香 均方误差 环境科学 水分 风味 数学 气象学 化学 统计 食品科学 地理
作者
Cheng Chen,Wuyi Zhang,Zhiguo Shan,Chunhua Zhang,Tianwu Dong,Zhouqiang Feng,Chengkang Wang
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:10 (4): 1021-1038 被引量:7
标识
DOI:10.1002/fsn3.2699
摘要

In this study, moisture contents and product quality of Pu-erh tea were predicted with deep learning-based methods. Images were captured continuously in the sun-drying process. Environmental parameters (EP) of air humidity, air temperature, global radiation, wind speed, and ultraviolet radiation were collected with a portable meteorological station. Sensory scores of aroma, flavor, liquor color, residue, and total scores were given by a trained panel. Convolutional neural network (CNN) and gated recurrent unit (GRU) models were constructed based on image information and EP, which were selected in advance using the neighborhood component analysis (NCA) algorithm. The evolved models based on deep-learning methods achieved satisfactory results, with RMSE of 0.4332, 0.2669, 0.7508 (also with R2 of .9997, .9882, .9986, with RPD of 53.5894, 13.1646, 26.3513) for moisture contents prediction in each batch of tea, tea at different sampling periods, the overall samples, respectively; and with RMSE of 0.291, 0.2815, 0.162, 0.1574, 0.3931 (also with R2 of .9688, .9772, .9752, .9741, .8906, with RPD of 5.6073, 6.5912, 6.352, 6.1428, 4.0045) for final quality prediction of aroma, flavor, liquor color, residue, total score, respectively. By analyzing and comparing the RMSE values, the most significant environmental parameters (EP) were selected. The proposed combinations of different EP can also provide a valuable reference in the development of a new sun-drying system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的勒完成签到 ,获得积分10
1秒前
研友_ZlvpxL发布了新的文献求助50
1秒前
1秒前
水三寿发布了新的文献求助10
1秒前
xiaorao完成签到 ,获得积分10
3秒前
丘比特应助Luke采纳,获得10
4秒前
4秒前
大意的星星完成签到,获得积分10
5秒前
点点发布了新的文献求助10
7秒前
香蕉觅云应助聪明摩托采纳,获得10
7秒前
随波逐流发布了新的文献求助150
10秒前
oneday完成签到,获得积分10
10秒前
清半夏关注了科研通微信公众号
10秒前
水三寿完成签到,获得积分10
11秒前
11秒前
小珂完成签到,获得积分10
11秒前
刘根发布了新的文献求助10
11秒前
小丘2024发布了新的文献求助10
13秒前
Lucas应助oneday采纳,获得10
13秒前
lgh完成签到,获得积分10
14秒前
14秒前
firewater发布了新的文献求助10
14秒前
不安青牛应助r921192采纳,获得10
15秒前
花开那年发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
11完成签到,获得积分10
17秒前
李佳欣完成签到,获得积分10
18秒前
19秒前
年华完成签到,获得积分10
19秒前
关于完成签到,获得积分10
19秒前
姚哥发布了新的文献求助10
19秒前
浩浩发布了新的文献求助10
20秒前
20秒前
21秒前
苏书白应助Luke采纳,获得10
21秒前
22秒前
renshiq完成签到,获得积分10
22秒前
CodeCraft应助valentin采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721