Moisture contents and product quality prediction of Pu‐erh tea in sun‐drying process with image information and environmental parameters

芳香 均方误差 环境科学 水分 风味 数学 气象学 化学 统计 食品科学 地理
作者
Cheng Chen,Wuyi Zhang,Zhiguo Shan,Chunhua Zhang,Tianwu Dong,Zhouqiang Feng,Chengkang Wang
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:10 (4): 1021-1038 被引量:7
标识
DOI:10.1002/fsn3.2699
摘要

In this study, moisture contents and product quality of Pu-erh tea were predicted with deep learning-based methods. Images were captured continuously in the sun-drying process. Environmental parameters (EP) of air humidity, air temperature, global radiation, wind speed, and ultraviolet radiation were collected with a portable meteorological station. Sensory scores of aroma, flavor, liquor color, residue, and total scores were given by a trained panel. Convolutional neural network (CNN) and gated recurrent unit (GRU) models were constructed based on image information and EP, which were selected in advance using the neighborhood component analysis (NCA) algorithm. The evolved models based on deep-learning methods achieved satisfactory results, with RMSE of 0.4332, 0.2669, 0.7508 (also with R2 of .9997, .9882, .9986, with RPD of 53.5894, 13.1646, 26.3513) for moisture contents prediction in each batch of tea, tea at different sampling periods, the overall samples, respectively; and with RMSE of 0.291, 0.2815, 0.162, 0.1574, 0.3931 (also with R2 of .9688, .9772, .9752, .9741, .8906, with RPD of 5.6073, 6.5912, 6.352, 6.1428, 4.0045) for final quality prediction of aroma, flavor, liquor color, residue, total score, respectively. By analyzing and comparing the RMSE values, the most significant environmental parameters (EP) were selected. The proposed combinations of different EP can also provide a valuable reference in the development of a new sun-drying system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小皮皮完成签到,获得积分10
刚刚
斯文败类应助cmxx采纳,获得10
刚刚
Lenacici完成签到,获得积分10
1秒前
QWERT完成签到,获得积分10
1秒前
Aowu完成签到,获得积分10
1秒前
周舟完成签到 ,获得积分10
1秒前
WenzongLai完成签到,获得积分10
1秒前
古炮发布了新的文献求助30
1秒前
MrHua完成签到,获得积分10
1秒前
my完成签到 ,获得积分10
3秒前
SYLH应助莫非采纳,获得10
3秒前
陶辞完成签到,获得积分10
3秒前
4秒前
4秒前
TCB完成签到,获得积分10
4秒前
酷酷剑通发布了新的文献求助10
4秒前
阿治完成签到 ,获得积分10
4秒前
胖飞飞完成签到,获得积分10
4秒前
超爱你完成签到,获得积分20
4秒前
wushuping完成签到,获得积分10
4秒前
安静青亦完成签到 ,获得积分10
5秒前
李爱国应助cole采纳,获得10
5秒前
lisa0612完成签到,获得积分10
5秒前
大江完成签到,获得积分10
5秒前
duoduozs完成签到,获得积分10
6秒前
song完成签到,获得积分20
6秒前
linkman发布了新的文献求助10
6秒前
任婷完成签到,获得积分10
6秒前
畅快大象完成签到,获得积分10
7秒前
h w wang发布了新的文献求助10
7秒前
Jindyla完成签到,获得积分10
7秒前
烂漫香水完成签到 ,获得积分10
7秒前
threewater完成签到,获得积分10
7秒前
云飞扬应助泡芙采纳,获得10
8秒前
8秒前
ting5260完成签到,获得积分10
9秒前
ceeray23发布了新的文献求助20
9秒前
思源应助木木的凤采纳,获得10
9秒前
笑点低不言完成签到,获得积分10
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478