Unsupervised learning of digit recognition using spike-timing-dependent plasticity

尖峰神经网络 计算机科学 峰值时间相关塑性 MNIST数据库 人工智能 机器学习 稳健性(进化) 人工神经网络 水准点(测量) 模式识别(心理学) 突触可塑性 地理 化学 受体 基因 生物化学 大地测量学
作者
Peter U. Diehl,Matthew Cook
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media SA]
卷期号:9 被引量:1223
标识
DOI:10.3389/fncom.2015.00099
摘要

In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
南风完成签到,获得积分10
2秒前
李爱国应助大力的无声采纳,获得10
3秒前
橘子海关注了科研通微信公众号
4秒前
jg发布了新的文献求助10
5秒前
6秒前
潇湘雪月发布了新的文献求助10
6秒前
威武灵阳完成签到,获得积分10
6秒前
20221120550完成签到,获得积分10
8秒前
yygg发布了新的文献求助10
9秒前
10秒前
无花果粒橙完成签到,获得积分10
12秒前
1004完成签到,获得积分20
13秒前
bean发布了新的文献求助10
13秒前
ding应助舒开心啦啦啦采纳,获得10
13秒前
13秒前
lulu完成签到,获得积分20
14秒前
14秒前
李征发布了新的文献求助20
17秒前
Owen应助yygg采纳,获得10
18秒前
悟川完成签到 ,获得积分10
19秒前
冯先森ya完成签到,获得积分10
20秒前
狴犴发布了新的文献求助10
20秒前
20秒前
小钻风发布了新的文献求助10
21秒前
科研通AI5应助独行侠采纳,获得10
21秒前
22秒前
半颜完成签到,获得积分10
22秒前
NexusExplorer应助ZJFL采纳,获得10
23秒前
24秒前
YS完成签到 ,获得积分20
24秒前
26秒前
lulu发布了新的文献求助30
26秒前
所所应助宁静致远采纳,获得10
27秒前
上官若男应助xingziyu采纳,获得10
27秒前
科研通AI5应助眰恦采纳,获得10
28秒前
索多倍发布了新的文献求助10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516067
求助须知:如何正确求助?哪些是违规求助? 3098247
关于积分的说明 9238827
捐赠科研通 2793272
什么是DOI,文献DOI怎么找? 1532930
邀请新用户注册赠送积分活动 712455
科研通“疑难数据库(出版商)”最低求助积分说明 707290