细胞凋亡
硝酸银
流式细胞术
化学
A549电池
分子生物学
MTT法
IC50型
硝酸盐
生物
癌症研究
细胞生物学
生物化学
体外
核化学
有机化学
作者
Ayşe Kaplan,Gülşen Akalın Çiftçi,Hatice Mehtap Kutlu
出处
期刊:Tumor Biology
[SAGE]
日期:2017-04-01
卷期号:39 (4): 101042831769503-101042831769503
被引量:28
标识
DOI:10.1177/1010428317695033
摘要
Lung cancer is the leading cause of male cancer deaths worldwide. Metal-based anticancer drugs have evolved significantly during the past decades. Recently, silver ions have been investigated for their anticancer effects. We aimed to study the time-course cytotoxic effects of silver nitrate on A549 adenocarcinomic human alveolar basal epithelial cells to provide insights into the molecular-level understanding of growth suppression mechanism involved in apoptosis. The influences of silver nitrate were studied via MTT assay, flow cytometry, immunocytochemical, confocal and transmission electron microscopy, and microarray assays. Silver nitrate showed inhibitory effects against A549 cells in a dose- and time-dependent manner for 24, 48, and 72 h and induced apoptosis. The early and late apoptotic cells and depolarized mitochondrial membrane potential were determined by the half-maximal inhibitory concentration (IC50) value of silver nitrate treated for 72 h. But cysteinyl aspartate proteinase-3 was not activated for 72 h. Furthermore, IC50 value of silver nitrate also induced apoptosis according to immunocytochemical assays for 72 h. The downregulated CCNY, HNRNPL, ASF1B, PIAS4, HNRNPH1, EIF2C2, TAF15, FOXC1, LEP, and PCB2 genes administered with silver nitrate IC50 were identified as apoptosis-leading genes. Silver nitrate may be a suitable therapeutic agent against lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI