清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer

数字化病理学 突变体 前列腺癌 前列腺 队列 H&E染色 病理 人工智能 癌症 免疫组织化学 医学 生物 肿瘤科 内科学 计算机科学 遗传学 基因
作者
Andrew J. Schaumberg,Mark A. Rubin,Thomas J. Fuchs
标识
DOI:10.1101/064279
摘要

A quantitative model to genetically interpret the histology in whole microscopy slide images is desirable to guide downstream immuno-histochemistry, genomics, and precision medicine. We constructed a statistical model that predicts whether or not SPOP is mutated in prostate cancer, given only the digital whole slide after standard hematoxylin and eosin [H&E] staining. Using a TCGA cohort of 177 prostate cancer patients where 20 had mutant SPOP, we trained multiple ensembles of residual networks, accurately distinguishing SPOP mutant from SPOP non-mutant patients (test AUROC=0.74, p=0.0007 Fisher’s Exact Test). We further validated our full metaensemble classifier on an independent test cohort from MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants and non-mutants were accurately distinguished despite TCGA slides being frozen sections and MSK-IMPACT slides being formalin-fixed paraffin-embedded sections (AUROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-IMPACT patients having mutant SPOP, trained on this expanded MSK-IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA cohort (AUROC=0.64, p=0.0306), and again accurately distinguished mutants from non-mutants using the same pipeline. Importantly, our method demonstrates tractable deep learning in this “small data” setting of 20-55 positive examples and quantifies each prediction’s uncertainty with confidence intervals. To our knowledge, this is the first statistical model to predict a genetic mutation in cancer directly from the patient’s digitized H&E-stained whole microscopy slide. Moreover, this is the first time quantitative features learned from patient genetics and histology have been used for content-based image retrieval, finding similar patients for a given patient where the histology appears to share the same genetic driver of disease i.e. SPOP mutation (p=0.0241 Kost’s Method), and finding similar patients for a given patient that does not have have that driver mutation (p=0.0170 Kost’s Method). Significance Statement This is the first pipeline predicting gene mutation probability in cancer from digitized H&E-stained microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a confidence interval of mutation probability. Through deep learning on small datasets, this enables automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds histologically similar patients by learned genetic-histologic relationships. Conception, Writing: AJS, TJF. Algorithms, Learning, CBIR: AJS. Analysis: AJS, MAR, TJF. Supervision: MAR, TJF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
3秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
笨笨完成签到 ,获得积分10
11秒前
芒芒发paper完成签到 ,获得积分10
27秒前
顺心蜜粉发布了新的文献求助30
31秒前
顺心蜜粉完成签到,获得积分10
42秒前
43秒前
CC发布了新的文献求助10
48秒前
淞淞于我完成签到 ,获得积分10
59秒前
Jenny发布了新的文献求助50
1分钟前
CC完成签到,获得积分10
1分钟前
天天开心完成签到 ,获得积分10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
2分钟前
玄之又玄完成签到,获得积分10
2分钟前
糯米团的完成签到 ,获得积分10
2分钟前
爆米花应助ceeray23采纳,获得20
2分钟前
爆米花应助彦嘉采纳,获得10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
Jenny发布了新的文献求助50
3分钟前
香蕉觅云应助ceeray23采纳,获得20
3分钟前
hoshi完成签到 ,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
思源应助方俊驰采纳,获得10
4分钟前
yuyuyu完成签到 ,获得积分10
4分钟前
4分钟前
方俊驰发布了新的文献求助10
4分钟前
方俊驰完成签到,获得积分10
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
liwang9301完成签到,获得积分10
4分钟前
5分钟前
5分钟前
lyj完成签到 ,获得积分10
5分钟前
Xuancheng_SINH完成签到,获得积分10
5分钟前
郭俊秀完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990550
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234