H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer

数字化病理学 突变体 前列腺癌 前列腺 队列 H&E染色 病理 人工智能 癌症 免疫组织化学 医学 生物 肿瘤科 内科学 计算机科学 遗传学 基因
作者
Andrew J. Schaumberg,Mark A. Rubin,Thomas J. Fuchs
标识
DOI:10.1101/064279
摘要

A quantitative model to genetically interpret the histology in whole microscopy slide images is desirable to guide downstream immuno-histochemistry, genomics, and precision medicine. We constructed a statistical model that predicts whether or not SPOP is mutated in prostate cancer, given only the digital whole slide after standard hematoxylin and eosin [H&E] staining. Using a TCGA cohort of 177 prostate cancer patients where 20 had mutant SPOP, we trained multiple ensembles of residual networks, accurately distinguishing SPOP mutant from SPOP non-mutant patients (test AUROC=0.74, p=0.0007 Fisher’s Exact Test). We further validated our full metaensemble classifier on an independent test cohort from MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants and non-mutants were accurately distinguished despite TCGA slides being frozen sections and MSK-IMPACT slides being formalin-fixed paraffin-embedded sections (AUROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-IMPACT patients having mutant SPOP, trained on this expanded MSK-IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA cohort (AUROC=0.64, p=0.0306), and again accurately distinguished mutants from non-mutants using the same pipeline. Importantly, our method demonstrates tractable deep learning in this “small data” setting of 20-55 positive examples and quantifies each prediction’s uncertainty with confidence intervals. To our knowledge, this is the first statistical model to predict a genetic mutation in cancer directly from the patient’s digitized H&E-stained whole microscopy slide. Moreover, this is the first time quantitative features learned from patient genetics and histology have been used for content-based image retrieval, finding similar patients for a given patient where the histology appears to share the same genetic driver of disease i.e. SPOP mutation (p=0.0241 Kost’s Method), and finding similar patients for a given patient that does not have have that driver mutation (p=0.0170 Kost’s Method). Significance Statement This is the first pipeline predicting gene mutation probability in cancer from digitized H&E-stained microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a confidence interval of mutation probability. Through deep learning on small datasets, this enables automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds histologically similar patients by learned genetic-histologic relationships. Conception, Writing: AJS, TJF. Algorithms, Learning, CBIR: AJS. Analysis: AJS, MAR, TJF. Supervision: MAR, TJF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
4秒前
wqy发布了新的文献求助200
5秒前
keke完成签到 ,获得积分10
5秒前
Rsoup发布了新的文献求助10
7秒前
liangerla发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
12秒前
单薄语山完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
火乐完成签到 ,获得积分10
13秒前
科目三应助和谐的芷文采纳,获得10
13秒前
13秒前
to高坚果发布了新的文献求助10
14秒前
14秒前
yu发布了新的文献求助10
15秒前
嘻嘻发布了新的文献求助10
17秒前
xhp完成签到,获得积分10
18秒前
19秒前
快快毕业发布了新的文献求助10
19秒前
Profeto应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
陌笙应助11采纳,获得20
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
COSMAO应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
HAHAH发布了新的文献求助10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
王HH发布了新的文献求助10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217910
求助须知:如何正确求助?哪些是违规求助? 4392232
关于积分的说明 13674773
捐赠科研通 4254547
什么是DOI,文献DOI怎么找? 2334502
邀请新用户注册赠送积分活动 1332143
关于科研通互助平台的介绍 1286182