H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer

数字化病理学 突变体 前列腺癌 前列腺 队列 H&E染色 病理 人工智能 癌症 免疫组织化学 医学 生物 肿瘤科 内科学 计算机科学 遗传学 基因
作者
Andrew J. Schaumberg,Mark A. Rubin,Thomas J. Fuchs
标识
DOI:10.1101/064279
摘要

A quantitative model to genetically interpret the histology in whole microscopy slide images is desirable to guide downstream immuno-histochemistry, genomics, and precision medicine. We constructed a statistical model that predicts whether or not SPOP is mutated in prostate cancer, given only the digital whole slide after standard hematoxylin and eosin [H&E] staining. Using a TCGA cohort of 177 prostate cancer patients where 20 had mutant SPOP, we trained multiple ensembles of residual networks, accurately distinguishing SPOP mutant from SPOP non-mutant patients (test AUROC=0.74, p=0.0007 Fisher’s Exact Test). We further validated our full metaensemble classifier on an independent test cohort from MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants and non-mutants were accurately distinguished despite TCGA slides being frozen sections and MSK-IMPACT slides being formalin-fixed paraffin-embedded sections (AUROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-IMPACT patients having mutant SPOP, trained on this expanded MSK-IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA cohort (AUROC=0.64, p=0.0306), and again accurately distinguished mutants from non-mutants using the same pipeline. Importantly, our method demonstrates tractable deep learning in this “small data” setting of 20-55 positive examples and quantifies each prediction’s uncertainty with confidence intervals. To our knowledge, this is the first statistical model to predict a genetic mutation in cancer directly from the patient’s digitized H&E-stained whole microscopy slide. Moreover, this is the first time quantitative features learned from patient genetics and histology have been used for content-based image retrieval, finding similar patients for a given patient where the histology appears to share the same genetic driver of disease i.e. SPOP mutation (p=0.0241 Kost’s Method), and finding similar patients for a given patient that does not have have that driver mutation (p=0.0170 Kost’s Method). Significance Statement This is the first pipeline predicting gene mutation probability in cancer from digitized H&E-stained microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a confidence interval of mutation probability. Through deep learning on small datasets, this enables automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds histologically similar patients by learned genetic-histologic relationships. Conception, Writing: AJS, TJF. Algorithms, Learning, CBIR: AJS. Analysis: AJS, MAR, TJF. Supervision: MAR, TJF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助XXY采纳,获得10
1秒前
弥里完成签到,获得积分10
1秒前
2秒前
科研通AI5应助sh生生采纳,获得10
3秒前
量子星尘发布了新的文献求助20
3秒前
浮游应助落后的小猫咪采纳,获得10
3秒前
科研通AI5应助qwertyuiop采纳,获得10
3秒前
Evelyn完成签到,获得积分10
6秒前
乐乐应助daishuheng采纳,获得10
7秒前
77在七月发布了新的文献求助10
7秒前
FashionBoy应助ZN采纳,获得10
8秒前
Jasper应助虚幻盼晴采纳,获得10
8秒前
执刀手完成签到,获得积分10
9秒前
10秒前
11秒前
帅哥发布了新的文献求助10
12秒前
CsY完成签到,获得积分10
12秒前
12秒前
15秒前
16秒前
王嘉豪发布了新的文献求助10
16秒前
Swii完成签到,获得积分10
17秒前
洋洋发布了新的文献求助10
17秒前
顾矜应助楠枫采纳,获得10
18秒前
19秒前
丘比特应助洁净灭男采纳,获得10
19秒前
20秒前
我是老大应助bingo0913采纳,获得10
20秒前
爆米花应助tiny_face采纳,获得10
20秒前
seedcui完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
22秒前
daishuheng发布了新的文献求助10
22秒前
23秒前
bkagyin应助帅哥采纳,获得10
23秒前
BaoGGG完成签到,获得积分10
23秒前
充电宝应助胡一菲采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4897026
求助须知:如何正确求助?哪些是违规求助? 4178393
关于积分的说明 12970953
捐赠科研通 3941893
什么是DOI,文献DOI怎么找? 2162399
邀请新用户注册赠送积分活动 1180912
关于科研通互助平台的介绍 1086525