H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer

数字化病理学 突变体 前列腺癌 前列腺 队列 H&E染色 病理 人工智能 癌症 免疫组织化学 医学 生物 肿瘤科 内科学 计算机科学 遗传学 基因
作者
Andrew J. Schaumberg,Mark A. Rubin,Thomas J. Fuchs
标识
DOI:10.1101/064279
摘要

A quantitative model to genetically interpret the histology in whole microscopy slide images is desirable to guide downstream immuno-histochemistry, genomics, and precision medicine. We constructed a statistical model that predicts whether or not SPOP is mutated in prostate cancer, given only the digital whole slide after standard hematoxylin and eosin [H&E] staining. Using a TCGA cohort of 177 prostate cancer patients where 20 had mutant SPOP, we trained multiple ensembles of residual networks, accurately distinguishing SPOP mutant from SPOP non-mutant patients (test AUROC=0.74, p=0.0007 Fisher’s Exact Test). We further validated our full metaensemble classifier on an independent test cohort from MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants and non-mutants were accurately distinguished despite TCGA slides being frozen sections and MSK-IMPACT slides being formalin-fixed paraffin-embedded sections (AUROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-IMPACT patients having mutant SPOP, trained on this expanded MSK-IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA cohort (AUROC=0.64, p=0.0306), and again accurately distinguished mutants from non-mutants using the same pipeline. Importantly, our method demonstrates tractable deep learning in this “small data” setting of 20-55 positive examples and quantifies each prediction’s uncertainty with confidence intervals. To our knowledge, this is the first statistical model to predict a genetic mutation in cancer directly from the patient’s digitized H&E-stained whole microscopy slide. Moreover, this is the first time quantitative features learned from patient genetics and histology have been used for content-based image retrieval, finding similar patients for a given patient where the histology appears to share the same genetic driver of disease i.e. SPOP mutation (p=0.0241 Kost’s Method), and finding similar patients for a given patient that does not have have that driver mutation (p=0.0170 Kost’s Method). Significance Statement This is the first pipeline predicting gene mutation probability in cancer from digitized H&E-stained microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a confidence interval of mutation probability. Through deep learning on small datasets, this enables automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds histologically similar patients by learned genetic-histologic relationships. Conception, Writing: AJS, TJF. Algorithms, Learning, CBIR: AJS. Analysis: AJS, MAR, TJF. Supervision: MAR, TJF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Gloriauuu采纳,获得10
刚刚
1秒前
一辛发布了新的文献求助10
4秒前
闪闪的梦柏完成签到 ,获得积分10
4秒前
王乾宇完成签到 ,获得积分10
5秒前
打打应助ma化疼没木采纳,获得10
7秒前
孤独丹秋完成签到,获得积分10
7秒前
vizi应助呵呵小朋友采纳,获得10
8秒前
科研通AI6应助liang2508采纳,获得10
8秒前
9秒前
10秒前
11秒前
12秒前
爱扎丸子头的红红完成签到 ,获得积分10
12秒前
12秒前
sanxuan完成签到 ,获得积分10
15秒前
lllllllll完成签到,获得积分10
16秒前
科研通AI6应助Na采纳,获得30
17秒前
霸气曼彤发布了新的文献求助10
17秒前
18秒前
18秒前
香蕉觅云应助美丽梦桃采纳,获得10
23秒前
23秒前
华仔应助qdd采纳,获得10
24秒前
共享精神应助胡萝卜采纳,获得10
25秒前
科目三应助FAN采纳,获得10
25秒前
充电宝应助CC采纳,获得10
25秒前
joey完成签到 ,获得积分10
26秒前
考拉完成签到,获得积分10
28秒前
29秒前
31秒前
科研通AI6应助liang2508采纳,获得10
31秒前
32秒前
劣根发布了新的文献求助10
33秒前
科目三应助伶俐雅山采纳,获得10
33秒前
美丽梦桃发布了新的文献求助10
35秒前
Orange应助刘刘采纳,获得10
35秒前
qdd发布了新的文献求助10
38秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076