已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer

数字化病理学 突变体 前列腺癌 前列腺 队列 H&E染色 病理 人工智能 癌症 免疫组织化学 医学 生物 肿瘤科 内科学 计算机科学 遗传学 基因
作者
Andrew J. Schaumberg,Mark A. Rubin,Thomas J. Fuchs
标识
DOI:10.1101/064279
摘要

A quantitative model to genetically interpret the histology in whole microscopy slide images is desirable to guide downstream immuno-histochemistry, genomics, and precision medicine. We constructed a statistical model that predicts whether or not SPOP is mutated in prostate cancer, given only the digital whole slide after standard hematoxylin and eosin [H&E] staining. Using a TCGA cohort of 177 prostate cancer patients where 20 had mutant SPOP, we trained multiple ensembles of residual networks, accurately distinguishing SPOP mutant from SPOP non-mutant patients (test AUROC=0.74, p=0.0007 Fisher’s Exact Test). We further validated our full metaensemble classifier on an independent test cohort from MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants and non-mutants were accurately distinguished despite TCGA slides being frozen sections and MSK-IMPACT slides being formalin-fixed paraffin-embedded sections (AUROC=0.86, p=0.0038). Moreover, we scanned an additional 36 MSK-IMPACT patients having mutant SPOP, trained on this expanded MSK-IMPACT cohort (test AUROC=0.75, p=0.0002), tested on the TCGA cohort (AUROC=0.64, p=0.0306), and again accurately distinguished mutants from non-mutants using the same pipeline. Importantly, our method demonstrates tractable deep learning in this “small data” setting of 20-55 positive examples and quantifies each prediction’s uncertainty with confidence intervals. To our knowledge, this is the first statistical model to predict a genetic mutation in cancer directly from the patient’s digitized H&E-stained whole microscopy slide. Moreover, this is the first time quantitative features learned from patient genetics and histology have been used for content-based image retrieval, finding similar patients for a given patient where the histology appears to share the same genetic driver of disease i.e. SPOP mutation (p=0.0241 Kost’s Method), and finding similar patients for a given patient that does not have have that driver mutation (p=0.0170 Kost’s Method). Significance Statement This is the first pipeline predicting gene mutation probability in cancer from digitized H&E-stained microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a confidence interval of mutation probability. Through deep learning on small datasets, this enables automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds histologically similar patients by learned genetic-histologic relationships. Conception, Writing: AJS, TJF. Algorithms, Learning, CBIR: AJS. Analysis: AJS, MAR, TJF. Supervision: MAR, TJF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penguin777发布了新的文献求助30
2秒前
yan发布了新的文献求助10
3秒前
zzy完成签到,获得积分20
3秒前
完美的芙蓉完成签到 ,获得积分10
7秒前
10秒前
活泼的小霸王完成签到 ,获得积分10
13秒前
sciscisci完成签到 ,获得积分10
14秒前
ick558完成签到,获得积分10
14秒前
安静的滑板应助yan采纳,获得10
15秒前
汪汪队完成签到 ,获得积分10
16秒前
16秒前
18秒前
LZY发布了新的文献求助20
20秒前
丘比特应助活泼的飞雪采纳,获得10
20秒前
伶俐绮发布了新的文献求助10
22秒前
23秒前
月入十达不刘应助FartKing采纳,获得20
23秒前
492357816完成签到,获得积分10
24秒前
XIA发布了新的文献求助10
25秒前
chiyudawang发布了新的文献求助10
25秒前
猫车高手完成签到,获得积分10
25秒前
淡淡翠安完成签到 ,获得积分10
26秒前
28秒前
DCW发布了新的文献求助10
31秒前
33秒前
orixero应助prophage采纳,获得10
34秒前
36秒前
俭朴的跳跳糖完成签到 ,获得积分10
37秒前
完美世界应助橘生淮南.采纳,获得10
37秒前
38秒前
Joseph_sss完成签到 ,获得积分10
39秒前
Milky发布了新的文献求助10
42秒前
姜月完成签到,获得积分10
42秒前
富贵儿完成签到 ,获得积分10
42秒前
43秒前
43秒前
端庄的如花完成签到 ,获得积分10
43秒前
顺利的冰旋完成签到 ,获得积分10
44秒前
Owen应助XIA采纳,获得10
44秒前
46秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219517
求助须知:如何正确求助?哪些是违规求助? 2868333
关于积分的说明 8160589
捐赠科研通 2535388
什么是DOI,文献DOI怎么找? 1367808
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618441