电动现象
纳米孔
电解质
多孔性
半径
材料科学
体积流量
Zeta电位
膜
电压
分析化学(期刊)
流动电流
电场
电渗
电泳
化学工程
纳米技术
复合材料
化学
色谱法
机械
电极
量子力学
生物化学
物理
工程类
物理化学
纳米颗粒
计算机科学
计算机安全
作者
Qian Yang,Bin Su,Ya-Feng Wang,Wanhao Wu
出处
期刊:Electrophoresis
[Wiley]
日期:2019-03-27
卷期号:40 (16-17): 2149-2156
被引量:9
标识
DOI:10.1002/elps.201800533
摘要
In this work, an efficient electroosmotic pump (EOP) based on the ultrathin silica nanoporous membrane (u-SNM), which can drive the motion of fluid under the operating voltage as low as 0.2 V, has been fabricated. Thanks to the ultrathin thickness of u-SNM (∼75 nm), the effective electric field strength across u-SNM could be as high as 8.27 × 105 V m-1 in 0.4 M KCl when 1.0 V of voltage was applied. The maximum normalized electroosmotic flow (EOF) rate was as high as 172.90 mL/min/cm2 /V, which was larger than most of other nanoporous membrane based EOPs. In addition to the ultrathin thickness, the high porosity of this membrane (with a pore density of 4 × 1012 cm-2 , corresponding to a porosity of 16.7%) also contribute to such a high EOF rate. Moreover, the EOF rate was found to be proportional to both the applied voltage and the electrolyte concentration. Because of small electrokinetic radius of u-SNM arising from its ultrasmall pore size (ca. 2.3 nm in diameter), the EOF rate increased with increasing the electrolyte concentration and reached the maximum at a concentration of 0.4 M. This dependence was rationalized by the variations of both zeta potential and electrokinetic radius with the electrolyte concentration.
科研通智能强力驱动
Strongly Powered by AbleSci AI