Short-term delayed recall of auditory verbal learning test provides equivalent value to long-term delayed recall in predicting MCI clinical outcomes: A longitudinal follow-up study

语言学习 心理学 言语记忆 召回 接收机工作特性 听力学 认知 医学 精神科 内科学 认知心理学
作者
Xu Yan,Keliang Chen,Qianhua Zhao,Li Fang,Qihao Guo
出处
期刊:Applied Neuropsychology: Adult [Informa]
卷期号:27 (1): 73-81 被引量:40
标识
DOI:10.1080/23279095.2018.1481067
摘要

This study was conducted to compare predictive power of Auditory verbal learning test (AVLT) recall measures for Alzheimer's disease (AD) conversion and normal cognition (NC) reversion from mild cognitive impairment (MCI). A total of 262 amnestic MCI patients were followed up longitudinally, who were then classified into different groups based on clinical outcomes. Demographic information and AVLT recall scores at baseline were compared among these groups. Receiver operating characteristic (ROC) curves were constructed to evaluate differentiating value of AVLT recall measures for MCI outcomes. Binary stepwise logistic regression analysis was performed to identify predictive AVLT measures. After average 30.8 ± 11.6 months follow-up, 89 patients converted to AD and 88 participants reverted to NC. At baseline, AD converters scored significantly lower in AVLT than nonconverters, while NC reverters performed much better than nonreverters (p < .01). AVLT-SR and AVLT-LR had larger areas under curve than AVLT-IR and AVLT-REC in distinguishing patients who progressed to AD or not (p < .05). Both AVLT-SR and AVLT-LR were significant predictors of MCI-to-AD conversion and MCI-to-NC reversion. Among AVLT recall measures, AVLT-SR and AVLT-LR provided the best and equivalent values in predicting MCI outcomes. Patients with lower AVLT-SR and AVLT-LR scores are more likely to develop AD. Consequently, AVLR-SR is a valuable and time-saving memory measure that deserves further application in memory clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到,获得积分10
1秒前
卧镁铀钳完成签到 ,获得积分10
2秒前
DHL完成签到,获得积分10
3秒前
TT发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
terence应助科研通管家采纳,获得30
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
5秒前
害怕的小玉完成签到,获得积分10
5秒前
6秒前
9秒前
梦里花落知多少完成签到,获得积分10
9秒前
10秒前
阳阳发布了新的文献求助10
10秒前
Poyd发布了新的文献求助10
12秒前
开开完成签到,获得积分10
12秒前
tao_blue发布了新的文献求助10
13秒前
13秒前
888完成签到,获得积分10
13秒前
饭神仙鱼完成签到,获得积分10
14秒前
KBYer发布了新的文献求助20
14秒前
Jzhang应助tmpstlml采纳,获得10
15秒前
YoYo发布了新的文献求助10
15秒前
豌豆发布了新的文献求助10
17秒前
18秒前
言叶完成签到,获得积分10
18秒前
19秒前
CipherSage应助清新的冷松采纳,获得10
19秒前
JamesPei应助Poyd采纳,获得10
20秒前
科目三应助药学牛马采纳,获得10
21秒前
lixm发布了新的文献求助10
22秒前
NAA完成签到,获得积分10
23秒前
23秒前
tao_blue完成签到,获得积分10
23秒前
荔枝完成签到,获得积分20
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849