多硫化物
电解质
锂(药物)
电化学
异质结
电极
分离器(采油)
光催化
聚噻吩
X射线光电子能谱
纳米复合材料
作者
Guilin Chen,Wentao Zhong,Yunsha Li,Qiang Deng,Xing Ou,Qichang Pan,Xiwen Wang,Xunhui Xiong,Chenghao Yang,Meilin Liu
标识
DOI:10.1021/acsami.8b19501
摘要
Despite outstanding theoretical energy density (2600 Wh kg-1) and low cost of lithium-sulfur (Li-S) batteries, their practical application is seriously hindered by inferior cycle performance and low Coulombic efficiency due to the shuttle of lithium polysulfides (LiPSs). Herein, we proposed a strategy that combines TiO-TiO2 heterostructure materials (H-TiO x, x = 1, 2) and conductive polypyrrole (PPy) to form a multifunctional sulfur host. Initially, the TiO-TiO2 heterostructure can enhance the redox reaction kinetics of sulfur species and improve the conductivity of sulfur cathode together with the PPy coating layer. Moreover, the defect-abundant H-TiO x matrices can trap LiPSs by the formation of Ti-S bond via the Lewis acid-base interaction. Furthermore, the PPy coating can physically hinder the diffusion of LiPSs, as well as chemically adsorb LiPSs by the polar-polar mechanism. Benefiting from the synergistic effect of H-TiO x and PPy layer, the novel cathode delivered high specific capacities at different current rates (1130, 990, 932, 862, and 726 mAh g-1 at 0.1, 0.2, 0.3, 0.5, and 1C, respectively) and an ultralow capacity decay of 0.0406% per cycle after 1000 cycles at 1C. This work can not only indicate effectiveness of employing H-TiO x materials to realize the LiPSs immobilization but also shed light on the feasibility of combining different materials to achieve the multifunctional sulfur hosts for advanced Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI