Rational inattention in discrete choice models: Estimable specifications of RI-multinomial logit (RI-MNL) and RI-nested logit (RI-NL) models

混合逻辑 离散选择 多项式logistic回归 嵌套逻辑 计量经济学 贝叶斯概率 多项式分布 罗伊特 数学 计算机科学 逻辑回归 统计
作者
Khandker Nurul Habib
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:172: 53-70 被引量:2
标识
DOI:10.1016/j.trb.2023.03.010
摘要

As opposed to the fully informed choice-making assumption in classical discrete choice models, the theory of Rational Inattention (RI)1 in discrete choice modelling has been recently proposed in the literature. Matějka and McKay (2015) proposed the RI-multinomial logit (RI-MNL), and Fosgerau et al. (2020) proposed the RI-nested logit (RI-NL) model. These models consider that choice makers are bayesian agents with prior probabilities of choices and process any further information assuming an information processing cost to have the updated/posterior choice probabilities. However, the proposed RI-MNL and RI-NL models are theoretical formulations without any estimable empirical specifications. This paper proposes econometric formulations of RI-MNL and RI-NL models that are estimable using classical maximum likelihood estimation methods and suitable for revealed crossectional choice data. The proposed models are estimated for commuting mode choices in the Greater Toronto and Hamilton Area (GTHA) using data from a household travel survey conducted in the region. Empirical investigation reveals that the induction of RI in the classical discrete choice models (MNL and NL) improves the model fit by large margins. While scale parameterization in classical MNL and NL does not make a better model, the scale parameterization better captures the choice heterogeneity within the RI framework. Between the RI-MNL and RI-NL, the RI-NL is proven to be the best. The RI-NL model can capture asymmetric (between increasing and decreasing values) elasticities of choice attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顾飞飞发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
风华完成签到,获得积分10
3秒前
薛洁洁发布了新的文献求助10
5秒前
6秒前
yf990703发布了新的文献求助10
7秒前
共享精神应助CC采纳,获得10
7秒前
7秒前
7秒前
ding应助June采纳,获得10
7秒前
7秒前
Qi发布了新的文献求助10
8秒前
贤来无事完成签到 ,获得积分10
8秒前
hhh发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
慕青应助晨晨CC采纳,获得10
10秒前
黑暗系发布了新的文献求助30
10秒前
11秒前
12秒前
12秒前
yuxiaobolab发布了新的文献求助10
13秒前
万能图书馆应助whisper采纳,获得10
13秒前
薛洁洁完成签到,获得积分10
13秒前
15秒前
tjl发布了新的文献求助20
15秒前
15秒前
15秒前
16秒前
斯文败类应助湖医小朱采纳,获得10
16秒前
cheer完成签到,获得积分10
17秒前
压缩应助1259671587采纳,获得10
17秒前
所所应助杨儿采纳,获得10
17秒前
搜集达人应助RJFENG采纳,获得10
17秒前
smiling完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137