Enhancing Enzyme Commission Number Prediction With Contrastive Learning and Agent Attention

注释 计算机科学 人工智能 功能(生物学) 序列(生物学) 机器学习 过程(计算) 特征(语言学) 模式识别(心理学) 生物 语言学 哲学 进化生物学 遗传学 操作系统
作者
Wendi Zhao,Qiaoling Han,Fan Yang,Yue Zhao
出处
期刊:Proteins [Wiley]
标识
DOI:10.1002/prot.26822
摘要

The accurate prediction of enzyme function is crucial for elucidating disease mechanisms and identifying drug targets. Nevertheless, existing enzyme commission (EC) number prediction methods are limited by database coverage and the depth of sequence information mining, hindering the efficiency and precision of enzyme function annotation. Therefore, this study introduces ProteEC-CLA (Protein EC number prediction model with Contrastive Learning and Agent Attention). ProteEC-CLA utilizes contrastive learning to construct positive and negative sample pairs, which not only enhances sequence feature extraction but also improves the utilization of unlabeled data. This process helps the model learn the differences in sequence features, thereby enhancing its ability to predict enzyme function. Integrating the pre-trained protein language model ESM2, the model generates informative sequence embeddings for deep functional correlation analysis, significantly enhancing prediction accuracy. With the incorporation of the Agent Attention mechanism, ProteEC-CLA's ability to comprehensively capture local details and global features is enhanced, ensuring high-accuracy predictions on complex sequences. The results demonstrate that ProteEC-CLA performs exceptionally well on two independent and representative datasets. In the standard dataset, it achieves 98.92% accuracy at the EC4 level. In the more challenging clustered split dataset, ProteEC-CLA achieves 93.34% accuracy and an F1-score of 94.72%. With only enzyme sequences as input, ProteEC-CLA can accurately predict EC numbers up to the fourth level, significantly enhancing annotation efficiency and accuracy, which makes it a highly efficient and precise functional annotation tool for enzymology research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意悒完成签到,获得积分10
3秒前
3秒前
爆米花应助勤奋的一刀采纳,获得10
4秒前
上官若男应助深情的巧蕊采纳,获得10
4秒前
D515完成签到,获得积分10
5秒前
安详忆雪完成签到,获得积分10
5秒前
5秒前
科研小狗发布了新的文献求助10
6秒前
单薄谷秋发布了新的文献求助20
6秒前
柠檬完成签到,获得积分10
7秒前
111完成签到,获得积分20
8秒前
8秒前
8秒前
悦耳的机器猫完成签到,获得积分10
9秒前
9秒前
宋炜发布了新的文献求助10
9秒前
安详忆雪发布了新的文献求助10
11秒前
D515发布了新的文献求助10
11秒前
chrysan发布了新的文献求助10
12秒前
skkr发布了新的文献求助10
13秒前
Hello应助齐齐齐采纳,获得10
14秒前
唐飒发布了新的文献求助10
15秒前
dl发布了新的文献求助10
15秒前
CipherSage应助帅气的新竹采纳,获得10
16秒前
Lucas应助KKKZ采纳,获得10
17秒前
chrysan完成签到,获得积分10
19秒前
爆米花应助LuoZuoZhi采纳,获得10
19秒前
科研通AI5应助啦啦咔嘞采纳,获得10
19秒前
19秒前
HMONEY应助lwl采纳,获得10
20秒前
20秒前
20秒前
木木完成签到,获得积分10
22秒前
周舟发布了新的文献求助20
22秒前
CipherSage应助huk采纳,获得10
24秒前
Whim应助热爱科研的自由酱采纳,获得30
24秒前
25秒前
怡然乾关注了科研通微信公众号
26秒前
悦耳的菲音完成签到,获得积分20
27秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427