清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Rate of Penetration of Horizontal Drilling by Combining Physical Model with Machine Learning Method in the China Jimusar Oil Field

可解释性 机器学习 一般化 计算机科学 人工智能 预测建模 钻探 领域(数学) 过程(计算) 工程类 数学 机械工程 操作系统 数学分析 纯数学
作者
Chuanjie Ren,Wenjun Huang,Deli Gao
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:28 (06): 2713-2736 被引量:16
标识
DOI:10.2118/212294-pa
摘要

Summary Rate of penetration (ROP) is one of the important indicators for evaluating drilling efficiency, which provides the basis for drilling parameter optimization. ROP prediction methods can be divided into two main categories—physical models and machine learning models. The physical models are derived from classical drilling theory and experimental results, with clear physical meanings, good interpretability, and generalization. However, physical models do not result in very accurate predictions due to assumptions and experiences introduced in the modeling process. Machine learning models can effectively learn the intrinsic relationships between data through the training of a lot of data. However, machine learning models are like black boxes and their performances are highly dependent on the quality of drilling data in oil fields, so their interpretability and generalization ability are relatively low. This study mainly focuses on establishing a more accurate model of ROP prediction with clear interpretability. To achieve this goal, two novel categories of hybrid modeling approaches were introduced for horizontal drilling in the China Jimusar oil field, one of which is the error compensation by machine learning and another is the weighted average outputs. In the first category of hybrid model, physical models are taken as the main submodel, and machine learning models are used to predict and counteract the errors caused by physical models. By this method, the physical model can effectively ensure its physical meaning and generalization, and the machine learning model, as a submodel, can effectively compensate for the low-accuracy defects of physical models to improve prediction accuracy. In the second category, combining physical models with machine learning models utilizing ensemble learning, the deficiencies of models are cancelled out by the other models in the ensemble—like a team effector. The paper presents hybrid models with four suggested steps, which include data collection and preprocessing, optimal selection of physical model, optimal selection of machine learning model, and establishment of hybrid model. The performances of physical models, machine learning models, and hybrid models are intercompared. From the view of prediction accuracy, model interpretability, modeling difficulty, and generalization, the hybrid model with error compensation by machine learning is the optimal method for ROP prediction. This study also demonstrates an optimal trade-off between high accuracy and good interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
量子星尘发布了新的文献求助10
10秒前
坚强白凝发布了新的文献求助10
14秒前
顾矜应助坚强白凝采纳,获得10
20秒前
25秒前
量子星尘发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
43秒前
badbaby完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
1分钟前
胡可完成签到 ,获得积分10
1分钟前
馅饼完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
优美的冰巧完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
彭于晏应助kkj采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
坚强白凝发布了新的文献求助10
1分钟前
情怀应助坚强白凝采纳,获得10
1分钟前
Huong完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
世隐发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
bc应助cadcae采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
酷波er应助Rebecca采纳,获得10
2分钟前
搜集达人应助HIMINNN采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
拾野完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
快准对完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666414
求助须知:如何正确求助?哪些是违规求助? 3225446
关于积分的说明 9763022
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188