亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning

医学 放射科 学习迁移 人工智能 磁共振成像 接收机工作特性 内科学 计算机科学
作者
Xueyan Mei,Zelong Liu,Philip M. Robson,Brett Marinelli,Mingqian Huang,Amish Doshi,Adam Jacobi,Chendi Cao,Katherine E. Link,Thomas Yang,Ying Wang,Hayit Greenspan,Timothy Deyer,Zahi A. Fayad,Yang Yang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (5) 被引量:126
标识
DOI:10.1148/ryai.210315
摘要

To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
清风浮云完成签到,获得积分10
10秒前
kante完成签到,获得积分10
10秒前
田柾国发布了新的文献求助10
12秒前
23秒前
brg1小王子发布了新的文献求助10
27秒前
27秒前
32秒前
jerry完成签到,获得积分10
35秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
Ava应助科研通管家采纳,获得10
37秒前
哭泣的金鱼完成签到,获得积分10
45秒前
45秒前
深情的凝云完成签到 ,获得积分10
53秒前
1分钟前
舒适的绿蓉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
甘木鸣完成签到 ,获得积分10
1分钟前
哈哈悦完成签到,获得积分10
1分钟前
纯真冰蝶完成签到 ,获得积分10
1分钟前
1分钟前
天大青年发布了新的文献求助10
1分钟前
爆米花应助天大青年采纳,获得10
1分钟前
2分钟前
叉叉仔啊完成签到,获得积分10
2分钟前
Stella发布了新的文献求助10
2分钟前
Lucas应助娜娜采纳,获得10
2分钟前
Stella完成签到,获得积分20
2分钟前
虚心怜阳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
娜娜发布了新的文献求助10
2分钟前
2分钟前
nana2hao发布了新的文献求助20
2分钟前
耍酷的飞凤完成签到,获得积分10
2分钟前
2分钟前
KSung完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727