RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning

医学 放射科 学习迁移 人工智能 磁共振成像 接收机工作特性 内科学 计算机科学
作者
Xueyan Mei,Zelong Liu,Philip M. Robson,Brett Marinelli,Mingqian Huang,Amish Doshi,Adam Jacobi,Chendi Cao,Katherine E. Link,Thomas Yang,Ying Wang,Hayit Greenspan,Timothy Deyer,Zahi A. Fayad,Yang Yang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (5) 被引量:126
标识
DOI:10.1148/ryai.210315
摘要

To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果完成签到,获得积分20
1秒前
GPTea应助洪汉采纳,获得100
2秒前
迷人冥王星完成签到,获得积分10
3秒前
HY完成签到,获得积分10
3秒前
3秒前
KAOKAO完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
4秒前
5秒前
大胆的自行车完成签到 ,获得积分10
7秒前
7秒前
KAOKAO发布了新的文献求助10
8秒前
9秒前
10秒前
WGS发布了新的文献求助10
10秒前
10秒前
tqqwerty完成签到,获得积分10
11秒前
K0h完成签到,获得积分10
11秒前
梅里完成签到,获得积分10
11秒前
余额不足发布了新的文献求助30
11秒前
dew应助王鑫采纳,获得10
12秒前
wanci应助周文鑫采纳,获得10
13秒前
风中的外套完成签到,获得积分10
13秒前
13秒前
fzzf发布了新的文献求助10
14秒前
14秒前
15秒前
欣慰的颦发布了新的文献求助10
15秒前
香蕉觅云应助www采纳,获得10
15秒前
358489228完成签到,获得积分10
15秒前
周凡淇发布了新的文献求助10
16秒前
快乐小白菜应助hkh采纳,获得10
17秒前
田様应助骑着蜗牛追导弹采纳,获得10
17秒前
领导范儿应助WGS采纳,获得10
18秒前
浮游应助ZH采纳,获得10
18秒前
余额不足完成签到,获得积分20
19秒前
19秒前
百事可爱完成签到 ,获得积分10
20秒前
深情安青应助123456采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739