RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning

医学 放射科 学习迁移 人工智能 磁共振成像 接收机工作特性 内科学 计算机科学
作者
Xueyan Mei,Zelong Liu,Philip M. Robson,Brett Marinelli,Mingqian Huang,Amish Doshi,Adam Jacobi,Chendi Cao,Katherine E. Link,Thomas Yang,Ying Wang,Hayit Greenspan,Timothy Deyer,Zahi A. Fayad,Yang Yang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (5) 被引量:126
标识
DOI:10.1148/ryai.210315
摘要

To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Dr.Tang完成签到 ,获得积分10
6秒前
闻屿完成签到,获得积分10
7秒前
lcarus完成签到 ,获得积分10
10秒前
风里等你完成签到,获得积分10
12秒前
赧赧完成签到 ,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
lcarus关注了科研通微信公众号
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Adc应助科研通管家采纳,获得10
14秒前
stiger应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
看文献完成签到,获得积分10
15秒前
15秒前
呆萌芙蓉完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
淮安石河子完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
娷静完成签到 ,获得积分10
23秒前
TGU的小马同学完成签到 ,获得积分10
23秒前
23秒前
老和山完成签到,获得积分10
25秒前
kusicfack完成签到,获得积分10
26秒前
27秒前
银河里完成签到 ,获得积分10
28秒前
空间完成签到 ,获得积分10
28秒前
安安完成签到,获得积分10
29秒前
NexusExplorer应助一个小胖子采纳,获得10
30秒前
笑点低的铁身完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527