RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning

医学 放射科 学习迁移 人工智能 磁共振成像 接收机工作特性 内科学 计算机科学
作者
Xueyan Mei,Zelong Liu,Philip M. Robson,Brett Marinelli,Mingqian Huang,Amish Doshi,Adam Jacobi,Chendi Cao,Katherine E. Link,Thomas Yang,Ying Wang,Hayit Greenspan,Timothy Deyer,Zahi A. Fayad,Yang Yang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (5) 被引量:126
标识
DOI:10.1148/ryai.210315
摘要

To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on downstream medical applications when using transfer learning.This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an outpatient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study interpretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks and using Dice scores for two segmentation problems.The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. For transfer learning tasks on small datasets-thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), and meniscal tears (MRI)-the RadImageNet models demonstrated a significant advantage (P < .001) to ImageNet models (9.4%, 4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets-pneumonia (chest radiography), COVID-19 (CT), SARS-CoV-2 (CT), and intracranial hemorrhage (CT)-the RadImageNet models also illustrated improved AUC (P < .001) by 1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 16.4% on thyroid and breast US datasets, respectively.RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for smaller radiologic datasets.Keywords: CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, Evidence-based Medicine, Computer Applications-General (Informatics) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Cadrin-Chênevert in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiamo发布了新的文献求助10
刚刚
无花果应助ED采纳,获得200
1秒前
笨笨芯发布了新的文献求助30
1秒前
往前冲发布了新的文献求助10
1秒前
一一发布了新的文献求助10
2秒前
Jasper应助淡淡碧玉采纳,获得10
2秒前
3秒前
3秒前
crowd_lpy发布了新的文献求助10
3秒前
全自动闯祸机完成签到 ,获得积分20
3秒前
4秒前
sh完成签到,获得积分10
4秒前
斯文败类应助笨笨芯采纳,获得10
5秒前
深情安青应助小花生采纳,获得10
5秒前
ZWK完成签到,获得积分10
5秒前
温眸完成签到,获得积分10
6秒前
戴岱完成签到,获得积分10
6秒前
Tiamo完成签到,获得积分10
7秒前
充电宝应助crowd_lpy采纳,获得10
7秒前
无情魂幽发布了新的文献求助10
8秒前
天天快乐应助宇航采纳,获得10
8秒前
xuan完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
11秒前
柔弱山芙完成签到,获得积分10
12秒前
123123完成签到,获得积分10
12秒前
超爱你发布了新的文献求助10
12秒前
大意的觅云完成签到,获得积分10
13秒前
苍耳君发布了新的文献求助10
14秒前
英吉利25发布了新的文献求助10
14秒前
15秒前
cxm666完成签到,获得积分10
15秒前
无情魂幽完成签到,获得积分10
15秒前
鸡蛋布丁完成签到,获得积分10
16秒前
zhongwei2284完成签到,获得积分10
16秒前
慕青应助chsdpolos采纳,获得10
17秒前
欢喜的小海豚完成签到,获得积分10
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751