HeadPose-Softmax: Head pose adaptive curriculum learning loss for deep face recognition

Softmax函数 人工智能 计算机科学 面子(社会学概念) 人脸检测 面部识别系统 模式识别(心理学) 特征(语言学) 边距(机器学习) 深度学习 机器学习 三维人脸识别 功能(生物学) 计算机视觉 社会科学 社会学 语言学 哲学 进化生物学 生物
作者
Jifan Yang,Zhongyuan Wang,Bo Wang,Jinsheng Xiao,Chao Liang,Zhen Han,Hua Zou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:140: 109552-109552
标识
DOI:10.1016/j.patcog.2023.109552
摘要

Face recognition has been one of the most popular applications in the field of target detection. Currently, frontal faces can be easily detected, but multi-view face detection remains a difficult task because of various factors such as illumination, various poses, occlusions, and facial expressions. Margin-based loss functions are used to increase the feature margins between different classes, thus enhancing the discriminability of face recognition models, but the performance in face detection in complex scenes (e.g., high pitch angle face detection in surveillance environments) can be significantly degraded. Recently, the idea of a mining-based strategy to emphasize hard samples has been used to achieve good results in multi-view face detection. However, most of the existing methods do not explicitly emphasize samples based on their importance, resulting in the underutilization of hard samples. In this paper, we propose a curriculum learning loss function (HeadPose-Softmax) to classify the difficulty of a sample based on its facial pose, and embed the concept of curriculum learning into the loss function to implement a novel training strategy for deep face recognition. The loss function explicitly emphasizes the importance of the samples according to the different difficulty of each sample, which allows the model to make fuller use of hard samples, focus on learning pose invariant features, and improve the accuracy of the model in multi-view face detection tasks. Specifically, our HeadPose-Softmax dynamically adjusts the relative importance of the hard samples according to the pose angle of the face in the hard samples during the training phase. At each stage, different samples are assigned different importance according to their corresponding difficulty. Extensive experimental results under popular benchmarks show that our HeadPose-Softmax can enhance the accuracy of the model in multi-view face detection and outperform the state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LUMOS完成签到,获得积分10
1秒前
1秒前
oldchen完成签到 ,获得积分10
2秒前
苗条妙旋应助山林采纳,获得10
2秒前
Lucas应助小李同学采纳,获得10
3秒前
3秒前
3秒前
3秒前
36456657应助lagertha采纳,获得10
4秒前
爆米花应助rinki采纳,获得10
4秒前
GGU应助羊可采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
qtmxxx发布了新的文献求助10
6秒前
lmy完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
充电宝应助郭倩采纳,获得10
8秒前
8秒前
Blue_Pig发布了新的文献求助10
8秒前
顺心雨双发布了新的文献求助10
9秒前
9秒前
虚幻的含蕾应助大气贞采纳,获得20
10秒前
10秒前
ssshuang完成签到,获得积分10
10秒前
clyhg完成签到,获得积分10
10秒前
10秒前
biolong545完成签到,获得积分10
10秒前
无花果应助知足常乐采纳,获得10
11秒前
柔之发布了新的文献求助10
11秒前
陶醉盼兰完成签到,获得积分10
11秒前
123完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
苗条妙旋应助风筝有风采纳,获得10
13秒前
susan发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447636
求助须知:如何正确求助?哪些是违规求助? 3043409
关于积分的说明 8993992
捐赠科研通 2731761
什么是DOI,文献DOI怎么找? 1498429
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690578