Speckle noise suppression of reconstructed image in digital holography based on BM3D improved convolutional neural network

斑点图案 光学 散斑噪声 全息术 卷积神经网络 散斑成像 数字全息术 材料科学 计算机科学 噪音(视频) 图像处理 人工智能 物理 图像(数学)
作者
Chen Yuan,Yuhui Fan,Guangming Zhang,Quan Wang,Sitian Li,Zhongyang Wang,Ming Dong
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:63 (22): 6000-6000
标识
DOI:10.1364/ao.528259
摘要

In digital holographic measurement, when light waves pass through inhomogeneous media or surfaces, speckle noise is generated, resulting in random, granular light and dark spots in the hologram, which greatly reduces the image quality. Therefore, in order to improve the image quality of holographic reconstruction, a noise reduction method based on the BM3D improved convolutional neural network (CNN) is proposed in this paper. Firstly, the similarity and important statistical information between blocks can be obtained by using BM3D. Then, the denoising convolutional neural network (DnCNN) is used to learn the relationship between the noise of a large number of samples and the noise image, and further purify the image to retain the details for a better denoising effect. Finally, a reflective off-axis digital holographic optical path system is constructed to collect the holograms of the test samples, and the reconstructed images are obtained by the Fresnel diffraction method to constitute a dataset with the simulated holographic reconstructed images to validate the proposed method in this paper, compared to the other methods, such as DnCNN, convolutional blind denoising network (CBDNet), BM3D, and Wiener filtering. The experimental results of qualitative and quantitative analyses show that the proposed method combines the advantages of traditional algorithms and deep learning, significantly enhances the robustness of the system, optimizes the denoising performance, and preserves the details of the reconstructed image to the greatest extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xff发布了新的文献求助10
2秒前
2秒前
现代的访曼给lihua的求助进行了留言
5秒前
知白完成签到 ,获得积分10
6秒前
PP发布了新的文献求助10
7秒前
柒_l发布了新的文献求助10
8秒前
8秒前
英姑应助qsw采纳,获得10
8秒前
shen完成签到,获得积分10
9秒前
失眠水风完成签到,获得积分10
10秒前
标致缘郡发布了新的文献求助10
10秒前
星期天发布了新的文献求助10
12秒前
情怀应助悦耳的芝麻采纳,获得10
12秒前
Ava应助lilili采纳,获得10
13秒前
小何完成签到 ,获得积分10
14秒前
14秒前
失眠水风发布了新的文献求助10
15秒前
Chief完成签到,获得积分0
17秒前
18秒前
18秒前
悦耳的芝麻完成签到,获得积分20
18秒前
19秒前
chenxin完成签到,获得积分10
19秒前
能干冬瓜发布了新的文献求助10
21秒前
gaolengtu完成签到 ,获得积分10
21秒前
小二郎应助SWL采纳,获得10
21秒前
慕青应助小蒋不延毕采纳,获得10
22秒前
标致绮露发布了新的文献求助10
23秒前
23秒前
闪电完成签到,获得积分10
24秒前
CipherSage应助欣慰的书本采纳,获得10
24秒前
欢呼雁完成签到,获得积分10
25秒前
25秒前
轩辕寄风应助雪白傲薇采纳,获得50
26秒前
26秒前
贾克斯发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963