Speckle noise suppression of reconstructed image in digital holography based on BM3D improved convolutional neural network

斑点图案 光学 散斑噪声 全息术 卷积神经网络 散斑成像 数字全息术 材料科学 计算机科学 噪音(视频) 图像处理 人工智能 物理 图像(数学)
作者
Chen Yuan,Yuhui Fan,Guangming Zhang,Quan Wang,Sitian Li,Zhongyang Wang,Ming Dong
出处
期刊:Applied Optics [The Optical Society]
卷期号:63 (22): 6000-6000
标识
DOI:10.1364/ao.528259
摘要

In digital holographic measurement, when light waves pass through inhomogeneous media or surfaces, speckle noise is generated, resulting in random, granular light and dark spots in the hologram, which greatly reduces the image quality. Therefore, in order to improve the image quality of holographic reconstruction, a noise reduction method based on the BM3D improved convolutional neural network (CNN) is proposed in this paper. Firstly, the similarity and important statistical information between blocks can be obtained by using BM3D. Then, the denoising convolutional neural network (DnCNN) is used to learn the relationship between the noise of a large number of samples and the noise image, and further purify the image to retain the details for a better denoising effect. Finally, a reflective off-axis digital holographic optical path system is constructed to collect the holograms of the test samples, and the reconstructed images are obtained by the Fresnel diffraction method to constitute a dataset with the simulated holographic reconstructed images to validate the proposed method in this paper, compared to the other methods, such as DnCNN, convolutional blind denoising network (CBDNet), BM3D, and Wiener filtering. The experimental results of qualitative and quantitative analyses show that the proposed method combines the advantages of traditional algorithms and deep learning, significantly enhances the robustness of the system, optimizes the denoising performance, and preserves the details of the reconstructed image to the greatest extent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Isabella发布了新的文献求助10
刚刚
DD完成签到,获得积分20
1秒前
2秒前
2秒前
哈哈哈哈哈完成签到,获得积分10
2秒前
vera完成签到,获得积分10
2秒前
Hello应助火树银花采纳,获得10
3秒前
Li完成签到,获得积分10
3秒前
黄石发布了新的文献求助10
3秒前
keyan完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
caisongliang完成签到,获得积分10
7秒前
传奇3应助香蕉以菱采纳,获得10
8秒前
搜集达人应助竹子采纳,获得10
8秒前
子不语发布了新的文献求助10
8秒前
8秒前
马梓玥发布了新的文献求助20
8秒前
8秒前
ltyuli发布了新的文献求助10
9秒前
9秒前
10秒前
爆米花应助luoliping采纳,获得10
10秒前
10秒前
fishhh发布了新的文献求助40
10秒前
思源应助甜甜的枫采纳,获得10
10秒前
诡瞳GT发布了新的文献求助10
10秒前
11秒前
101022完成签到,获得积分20
11秒前
13秒前
李哈哈完成签到,获得积分10
13秒前
李小小完成签到,获得积分10
13秒前
科研狗发布了新的文献求助10
13秒前
14秒前
14秒前
搜集达人应助大白采纳,获得10
15秒前
15秒前
敏敏发布了新的文献求助10
15秒前
ltyuli完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588804
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788829
捐赠科研通 4626418
什么是DOI,文献DOI怎么找? 2531970
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329