已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An accident severity prediction framework with consider features interaction

事故(哲学) 计算机科学 认识论 哲学
作者
Lei Dong,Ruidong Gong,Zhijian Wang,Zhongxin Chen,Yanfeng Li,Weibo Ren
出处
期刊:Proceedings of the Institution of Civil Engineers [Thomas Telford Ltd.]
卷期号:: 1-12
标识
DOI:10.1680/jtran.24.00050
摘要

Accident severity prediction is increasingly important for preventing and reducing losses due to traffic accidents. However, many studies ignore the complex relationship between features during feature selection. To improve the prediction accuracy of an accident severity prediction model, in this paper, the interactions between multiple features are considered. First, the feature selection algorithm of recursive feature elimination with cross-validation is improved by using Shapley additive explanations as the feature importance assessment metric. Then, to decrease the time expense of manually finding hyperparameters of the model, the hunter–prey optimisation (HPO) algorithm is introduced and logistic mapping together with stochastic perturbation is added to it, which makes it easier to skip out of the partial optimum during the optimisation search. Finally, the improved HPO algorithm is used to optimise the hyperparameters of the CatBoost model. The US traffic accident dataset is introduced for the validity of the proposed framework. Experimental results show that the proposed framework achieves a prediction accuracy of 96.63%, which is better than other state-of-the-art methods. The high accuracy of the prediction model can help decision-makers develop more rational transportation policies; some traffic management measures are also proposed in this study, based on the selected features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
星辰大海应助kxran采纳,获得10
3秒前
luna0111完成签到,获得积分10
4秒前
2222233发布了新的文献求助10
5秒前
所所应助Oscillator采纳,获得10
7秒前
8秒前
科研通AI2S应助俊逸芸遥采纳,获得10
8秒前
lulu917发布了新的文献求助10
10秒前
善学以致用应助赎罪采纳,获得10
11秒前
11秒前
罗小小发布了新的文献求助10
12秒前
毛豆应助周周采纳,获得10
19秒前
冷酷的闹闹完成签到 ,获得积分10
21秒前
22秒前
槿落发布了新的文献求助50
22秒前
momo应助augur采纳,获得10
23秒前
26秒前
konglong发布了新的文献求助20
26秒前
hou发布了新的文献求助10
27秒前
执光完成签到,获得积分10
28秒前
小马甲应助slokni采纳,获得10
30秒前
超帅沂发布了新的文献求助10
31秒前
只有雨知晓完成签到,获得积分10
31秒前
过儿完成签到,获得积分10
31秒前
斯文跳跳糖完成签到,获得积分10
32秒前
爆米花应助Pomelo采纳,获得10
34秒前
36秒前
36秒前
企鹅吃圣代完成签到 ,获得积分10
36秒前
tt发布了新的文献求助10
40秒前
酷波er应助hou采纳,获得10
41秒前
41秒前
xumengsuo发布了新的文献求助10
42秒前
43秒前
44秒前
44秒前
年糕发布了新的文献求助20
45秒前
47秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422633
求助须知:如何正确求助?哪些是违规求助? 3022993
关于积分的说明 8903137
捐赠科研通 2710447
什么是DOI,文献DOI怎么找? 1486443
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286