亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Attention Regression Flow for Defect Detection

计算机科学 离群值 特征(语言学) 模式识别(心理学) 人工智能 回归 可视化 特征提取 异常检测 数据挖掘 机器学习 数学 统计 语言学 哲学
作者
Binhui Liu,Tianchu Guo,Bin Luo,Zhen Cui,Jian Yang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5183-5193 被引量:2
标识
DOI:10.1109/tip.2024.3457236
摘要

Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
7秒前
10秒前
Chris完成签到 ,获得积分0
14秒前
星启完成签到 ,获得积分10
14秒前
01完成签到 ,获得积分10
17秒前
小橘子吃傻子完成签到,获得积分10
22秒前
22秒前
24秒前
lucky发布了新的文献求助10
27秒前
27秒前
山山完成签到,获得积分20
29秒前
山山发布了新的文献求助10
33秒前
41秒前
苏苏发布了新的文献求助10
48秒前
激情的代曼完成签到 ,获得积分10
48秒前
光合作用完成签到,获得积分10
49秒前
务实书包完成签到,获得积分10
55秒前
爆米花应助小智采纳,获得10
56秒前
59秒前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小龙完成签到,获得积分10
1分钟前
斯文败类应助科研猫头鹰采纳,获得10
1分钟前
小智发布了新的文献求助10
1分钟前
nxy完成签到 ,获得积分10
1分钟前
Owen应助EaRnn采纳,获得10
1分钟前
玫瑰遇上奶油完成签到 ,获得积分10
1分钟前
赵雨欣完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小巧尔曼完成签到,获得积分10
1分钟前
1分钟前
EaRnn发布了新的文献求助10
1分钟前
chenzheng发布了新的文献求助10
1分钟前
可爱的函函应助Karma采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578