深度学习
计算机科学
掺杂剂
人工智能
噪音(视频)
图像(数学)
扫描透射电子显微镜
生成语法
基本事实
材料科学
鉴定(生物学)
单层
纳米技术
透射电子显微镜
生物系统
模式识别(心理学)
光电子学
兴奋剂
生物
植物
作者
K. Li,Xiaocang Han,Yuan Meng,Junxian Li,Yanhui Hong,Xiang Chen,Jing-Yang You,Yao Lin,Wenchao Hu,Zhiyi Xia,Guolin Ke,Linfeng Zhang,Jin Zhang,Xiaoxu Zhao
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-08-06
卷期号:24 (33): 10275-10283
标识
DOI:10.1021/acs.nanolett.4c02654
摘要
Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS
科研通智能强力驱动
Strongly Powered by AbleSci AI