清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal Reaction: Information Modulation for Cross-Modal Representation Learning

计算机科学 嵌入 人工智能 机器学习 情态动词 滤波器(信号处理) 代表(政治) 过程(计算) 计算机视觉 政治学 政治 操作系统 化学 高分子化学 法学
作者
Ying Zeng,Sijie Mai,Wenjun Yan,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2178-2191 被引量:6
标识
DOI:10.1109/tmm.2023.3293335
摘要

In multimodal machine learning, proper handling of cross-modal information is essential for obtaining an ideal joint embedding. Despite the progress made by recent fusion strategies, we hold that before the fusion stage, the unimodal representation inevitably contains noise that may hinder the correct learning of cross-modal dynamics and affect multimodal fusion. It is worthwhile to investigate how the information is being utilized and how to make the full use of it. Rethinking the process of leveraging multiple modalities for the joint embedding, multimodal learning can be regarded as a chemical reaction process and two steps may benefit learning: 1) purification to filter impurity, and 2) catalyst to facilitate learning. In this paper, we propose a Multimodal Information Modulation (MIM) learning framework to modulate the contribution and utilization of the cross-modal information, which identifies and handles the ‘impurity’ and ‘catalyst’ in multimodal learning. Specifically, a Unimodal Purification Network (UPN) is proposed to identify and explicitly filter out the impurity within each modality before fusion, which reduces the possibility of learning incorrect cross-modal dynamics. Besides, based on the intuition that useful information has the potential in the guidance of model updating, it plays a role to facilitate learning, which is achieved by the design of the Knowledge Guidance Scheme (KGS) considering both the intra- and inter-modal scenarios. Different to a majority of works that emphasize the role of useful information in the fusion and inference stage, KGS considers its potential role in assisting the representation learning of weaker components. Besides, it fully considers the modality dominance problem and sample variations for optimization. In short, MIM manages to modulate the useless/useful information to minimize/emphasize their contribution. Experimental results verify the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/MIM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex-Song完成签到 ,获得积分0
2秒前
哥哥发布了新的文献求助10
5秒前
sadh2完成签到 ,获得积分10
7秒前
摆渡人发布了新的文献求助10
9秒前
欣欣完成签到 ,获得积分10
15秒前
摆渡人完成签到,获得积分10
15秒前
启程完成签到 ,获得积分10
15秒前
叁月二完成签到 ,获得积分10
15秒前
酷波er应助热爱芬达的1s采纳,获得10
22秒前
陈A完成签到 ,获得积分10
26秒前
夜琉璃完成签到 ,获得积分10
29秒前
纸条条完成签到 ,获得积分10
31秒前
AliEmbark完成签到,获得积分10
33秒前
33秒前
ni发布了新的文献求助20
34秒前
36秒前
coding完成签到,获得积分10
40秒前
leemiii完成签到 ,获得积分10
48秒前
50秒前
孙老师完成签到 ,获得积分10
51秒前
阿童木完成签到 ,获得积分10
52秒前
忽远忽近的她完成签到 ,获得积分10
53秒前
sidashu发布了新的文献求助10
53秒前
热爱芬达的1s完成签到,获得积分10
54秒前
cece发布了新的文献求助30
56秒前
Beyond095完成签到 ,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
cece完成签到,获得积分20
1分钟前
陶醉的小海豚完成签到,获得积分10
1分钟前
平淡冬亦完成签到 ,获得积分10
2分钟前
2分钟前
危机的慕卉完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
yindi1991完成签到 ,获得积分10
2分钟前
科研通AI6应助呵呵心情采纳,获得10
2分钟前
机智的嘻嘻完成签到 ,获得积分10
2分钟前
fan完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551