Multimodal Reaction: Information Modulation for Cross-Modal Representation Learning

计算机科学 嵌入 人工智能 机器学习 情态动词 滤波器(信号处理) 代表(政治) 过程(计算) 计算机视觉 政治学 政治 操作系统 化学 高分子化学 法学
作者
Ying Zeng,Sijie Mai,Wenjun Yan,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2178-2191 被引量:6
标识
DOI:10.1109/tmm.2023.3293335
摘要

In multimodal machine learning, proper handling of cross-modal information is essential for obtaining an ideal joint embedding. Despite the progress made by recent fusion strategies, we hold that before the fusion stage, the unimodal representation inevitably contains noise that may hinder the correct learning of cross-modal dynamics and affect multimodal fusion. It is worthwhile to investigate how the information is being utilized and how to make the full use of it. Rethinking the process of leveraging multiple modalities for the joint embedding, multimodal learning can be regarded as a chemical reaction process and two steps may benefit learning: 1) purification to filter impurity, and 2) catalyst to facilitate learning. In this paper, we propose a Multimodal Information Modulation (MIM) learning framework to modulate the contribution and utilization of the cross-modal information, which identifies and handles the ‘impurity’ and ‘catalyst’ in multimodal learning. Specifically, a Unimodal Purification Network (UPN) is proposed to identify and explicitly filter out the impurity within each modality before fusion, which reduces the possibility of learning incorrect cross-modal dynamics. Besides, based on the intuition that useful information has the potential in the guidance of model updating, it plays a role to facilitate learning, which is achieved by the design of the Knowledge Guidance Scheme (KGS) considering both the intra- and inter-modal scenarios. Different to a majority of works that emphasize the role of useful information in the fusion and inference stage, KGS considers its potential role in assisting the representation learning of weaker components. Besides, it fully considers the modality dominance problem and sample variations for optimization. In short, MIM manages to modulate the useless/useful information to minimize/emphasize their contribution. Experimental results verify the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/MIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangzhang发布了新的文献求助10
刚刚
斯文败类应助文明8采纳,获得10
1秒前
1秒前
2秒前
玛卡巴卡完成签到 ,获得积分10
2秒前
小仙女完成签到,获得积分10
2秒前
Omni发布了新的文献求助10
4秒前
5秒前
方赫然应助左辄采纳,获得10
5秒前
董泽云完成签到 ,获得积分20
5秒前
CipherSage应助dan1029采纳,获得10
6秒前
桐桐应助dan1029采纳,获得10
6秒前
yyyyy完成签到,获得积分10
7秒前
不配.应助Wmin采纳,获得20
7秒前
7秒前
7秒前
smz完成签到 ,获得积分10
7秒前
Accept完成签到,获得积分10
8秒前
劈里啪啦滴毛毛完成签到 ,获得积分10
8秒前
史超完成签到,获得积分10
9秒前
11秒前
完美的天空应助yyyyy采纳,获得10
11秒前
11秒前
火山蜗牛完成签到,获得积分10
12秒前
壮观的菠萝完成签到,获得积分20
15秒前
明理问柳完成签到,获得积分10
15秒前
15秒前
猪小猪完成签到,获得积分10
16秒前
琼仔仔完成签到 ,获得积分10
16秒前
缄默发布了新的文献求助10
16秒前
17秒前
强健的绮琴完成签到,获得积分10
18秒前
humorlife完成签到,获得积分10
18秒前
丘比特应助优雅的纸鹤采纳,获得10
19秒前
梦想or现实完成签到,获得积分10
19秒前
西溪完成签到 ,获得积分10
22秒前
凯蒂完成签到,获得积分10
22秒前
23秒前
科研通AI2S应助执念采纳,获得10
24秒前
Seldomyg完成签到 ,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239405
求助须知:如何正确求助?哪些是违规求助? 2884745
关于积分的说明 8235100
捐赠科研通 2552925
什么是DOI,文献DOI怎么找? 1381085
科研通“疑难数据库(出版商)”最低求助积分说明 649190
邀请新用户注册赠送积分活动 624863