亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Reaction: Information Modulation for Cross-Modal Representation Learning

计算机科学 嵌入 人工智能 机器学习 情态动词 滤波器(信号处理) 代表(政治) 过程(计算) 计算机视觉 政治学 政治 操作系统 化学 高分子化学 法学
作者
Ying Zeng,Sijie Mai,Wenjun Yan,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2178-2191 被引量:6
标识
DOI:10.1109/tmm.2023.3293335
摘要

In multimodal machine learning, proper handling of cross-modal information is essential for obtaining an ideal joint embedding. Despite the progress made by recent fusion strategies, we hold that before the fusion stage, the unimodal representation inevitably contains noise that may hinder the correct learning of cross-modal dynamics and affect multimodal fusion. It is worthwhile to investigate how the information is being utilized and how to make the full use of it. Rethinking the process of leveraging multiple modalities for the joint embedding, multimodal learning can be regarded as a chemical reaction process and two steps may benefit learning: 1) purification to filter impurity, and 2) catalyst to facilitate learning. In this paper, we propose a Multimodal Information Modulation (MIM) learning framework to modulate the contribution and utilization of the cross-modal information, which identifies and handles the ‘impurity’ and ‘catalyst’ in multimodal learning. Specifically, a Unimodal Purification Network (UPN) is proposed to identify and explicitly filter out the impurity within each modality before fusion, which reduces the possibility of learning incorrect cross-modal dynamics. Besides, based on the intuition that useful information has the potential in the guidance of model updating, it plays a role to facilitate learning, which is achieved by the design of the Knowledge Guidance Scheme (KGS) considering both the intra- and inter-modal scenarios. Different to a majority of works that emphasize the role of useful information in the fusion and inference stage, KGS considers its potential role in assisting the representation learning of weaker components. Besides, it fully considers the modality dominance problem and sample variations for optimization. In short, MIM manages to modulate the useless/useful information to minimize/emphasize their contribution. Experimental results verify the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/MIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
31秒前
丁元英完成签到,获得积分10
35秒前
36秒前
莫名是个小疯子应助契咯采纳,获得10
40秒前
Suraim完成签到,获得积分10
46秒前
契咯给契咯的求助进行了留言
49秒前
量子星尘发布了新的文献求助10
53秒前
ddd完成签到,获得积分10
55秒前
56秒前
1分钟前
1分钟前
孙严青完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阳光的芯发布了新的文献求助10
1分钟前
1分钟前
LANER完成签到 ,获得积分10
1分钟前
zhengxin发布了新的文献求助10
1分钟前
莫名是个小疯子应助倪妮采纳,获得10
1分钟前
莫名是个小疯子应助倪妮采纳,获得10
1分钟前
1分钟前
zhengxin完成签到,获得积分10
1分钟前
今后应助zhengxin采纳,获得10
1分钟前
阳光的芯完成签到,获得积分10
1分钟前
2分钟前
科研通AI2S应助春晓采纳,获得10
2分钟前
viettu7d发布了新的文献求助30
2分钟前
牛乃唐完成签到,获得积分10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
春晓完成签到,获得积分10
2分钟前
春晓发布了新的文献求助10
2分钟前
dagangwood完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104396
求助须知:如何正确求助?哪些是违规求助? 4314528
关于积分的说明 13443436
捐赠科研通 4142849
什么是DOI,文献DOI怎么找? 2269970
邀请新用户注册赠送积分活动 1272555
关于科研通互助平台的介绍 1209381