Multimodal Reaction: Information Modulation for Cross-Modal Representation Learning

计算机科学 嵌入 人工智能 机器学习 情态动词 滤波器(信号处理) 代表(政治) 过程(计算) 计算机视觉 化学 政治 政治学 高分子化学 法学 操作系统
作者
Ying Zeng,Sijie Mai,Wenjun Yan,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2178-2191 被引量:6
标识
DOI:10.1109/tmm.2023.3293335
摘要

In multimodal machine learning, proper handling of cross-modal information is essential for obtaining an ideal joint embedding. Despite the progress made by recent fusion strategies, we hold that before the fusion stage, the unimodal representation inevitably contains noise that may hinder the correct learning of cross-modal dynamics and affect multimodal fusion. It is worthwhile to investigate how the information is being utilized and how to make the full use of it. Rethinking the process of leveraging multiple modalities for the joint embedding, multimodal learning can be regarded as a chemical reaction process and two steps may benefit learning: 1) purification to filter impurity, and 2) catalyst to facilitate learning. In this paper, we propose a Multimodal Information Modulation (MIM) learning framework to modulate the contribution and utilization of the cross-modal information, which identifies and handles the ‘impurity’ and ‘catalyst’ in multimodal learning. Specifically, a Unimodal Purification Network (UPN) is proposed to identify and explicitly filter out the impurity within each modality before fusion, which reduces the possibility of learning incorrect cross-modal dynamics. Besides, based on the intuition that useful information has the potential in the guidance of model updating, it plays a role to facilitate learning, which is achieved by the design of the Knowledge Guidance Scheme (KGS) considering both the intra- and inter-modal scenarios. Different to a majority of works that emphasize the role of useful information in the fusion and inference stage, KGS considers its potential role in assisting the representation learning of weaker components. Besides, it fully considers the modality dominance problem and sample variations for optimization. In short, MIM manages to modulate the useless/useful information to minimize/emphasize their contribution. Experimental results verify the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/MIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
benyu发布了新的文献求助10
刚刚
彳亍完成签到,获得积分10
刚刚
Ki_Ayasato发布了新的文献求助10
刚刚
LYLXY完成签到,获得积分10
1秒前
1秒前
3秒前
结实的山菡应助LIUZQ采纳,获得10
3秒前
wasiwan发布了新的文献求助10
3秒前
3秒前
霸气的瑛完成签到,获得积分10
3秒前
顺心凡发布了新的文献求助10
4秒前
4秒前
doujuanjuan发布了新的文献求助10
5秒前
6秒前
IRONY发布了新的文献求助10
6秒前
高高的涔完成签到,获得积分20
7秒前
Sky36001发布了新的文献求助10
8秒前
小马甲应助自然的砖头采纳,获得30
9秒前
NexusExplorer应助自然的砖头采纳,获得10
9秒前
Wangran完成签到 ,获得积分10
9秒前
9秒前
benyu完成签到,获得积分10
10秒前
丰富青发布了新的文献求助10
10秒前
科研通AI2S应助shuofeng采纳,获得10
11秒前
12秒前
13秒前
13秒前
小刘紧张完成签到,获得积分10
13秒前
jj完成签到,获得积分10
14秒前
Sjingjia完成签到,获得积分10
14秒前
14秒前
15秒前
TTD发布了新的文献求助10
15秒前
16秒前
plastic2024完成签到,获得积分10
16秒前
16秒前
wanci应助辛勤易烟采纳,获得10
17秒前
杨杨杨发布了新的文献求助10
18秒前
19秒前
小菲发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794