亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Anomaly Detection for Multivariate Incomplete Data using GAN-based Data Imputation: A Comparative Study

缺少数据 异常检测 插补(统计学) 计算机科学 离群值 数据挖掘 协方差 多元统计 超参数 模式识别(心理学) 人工智能 统计 机器学习 数学
作者
Kisan Sarda,Amol Yerudkar,Carmen Del Vecchio
标识
DOI:10.1109/med59994.2023.10185791
摘要

With the increasing interconnectivity of cyber-physical systems (CPSs) in various fields, such as manufacturing plants, power plants, and smart networked systems, large amounts of multivariate data are generated through sensors and actuators, also other data sources such as measurements and images. This paper focuses on the anomaly detection (AD) problem, also known as fault detection or outlier detection, depending on the type of dataset, which involves identifying anomalous values in the dataset using analytical methods. However, datasets often contain missing values, which can lead to incorrect outcomes and affect the availability of anomalous samples that are fewer in amount, making incomplete datasets. Therefore, a generalized AD method is proposed for incomplete datasets, which involves two steps: data imputation (DI) to obtain complete datasets using GAN and later AD for the complete datasets. While statistical-based imputation methods are commonly used, they do not consider data distribution for datasets with anomalous samples. The capabilities of GANbased DI are tested under different hyperparameter settings and percentages of missing values. The AD problem is then addressed using seven unsupervised anomaly detection methods on six different datasets, including a real dataset from a steel manufacturing plant in Italy. Each dataset is analyzed to determine which DI and AD method combination performs the best. The results show that GAN-imputed data provides the best DI performance, while the reweighted minimum covariance determinant (RMCD) method offers the overall best AD results combined with GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
cc发布了新的文献求助10
19秒前
23秒前
Hello应助cc采纳,获得10
28秒前
小俊完成签到,获得积分10
30秒前
善学以致用应助呆萌念梦采纳,获得10
42秒前
叶思言完成签到,获得积分10
52秒前
52秒前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顺心凡之完成签到,获得积分10
1分钟前
Crh发布了新的文献求助10
1分钟前
传奇3应助叶思言采纳,获得10
1分钟前
Ava应助啵啵龙采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
啵啵龙发布了新的文献求助10
1分钟前
共享精神应助研友_EZ1GJL采纳,获得10
1分钟前
Crh关注了科研通微信公众号
1分钟前
1分钟前
gy发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
研友_EZ1GJL发布了新的文献求助10
2分钟前
呆萌念梦发布了新的文献求助10
2分钟前
wushuimei完成签到 ,获得积分10
2分钟前
研友_EZ1GJL完成签到,获得积分10
2分钟前
zs完成签到 ,获得积分10
2分钟前
呆萌念梦发布了新的文献求助10
2分钟前
大气如曼完成签到,获得积分20
2分钟前
2分钟前
2分钟前
坦率的乐蕊完成签到 ,获得积分10
2分钟前
Liyipu完成签到 ,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307359
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500151
捐赠科研通 2615398
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410