Attractor and integrator networks in the brain

吸引子 计算机科学 稳健性(进化) 计算 积分器 模块化设计 集合(抽象数据类型) 简单(哲学) 理论计算机科学 数学 算法 数学分析 计算机网络 生物化学 哲学 带宽(计算) 认识论 基因 化学 程序设计语言 操作系统
作者
Mikail Khona,Ila Fiete
出处
期刊:Nature Reviews Neuroscience [Springer Nature]
卷期号:23 (12): 744-766 被引量:159
标识
DOI:10.1038/s41583-022-00642-0
摘要

In this Review, we describe the singular success of attractor neural network models in describing how the brain maintains persistent activity states for working memory, corrects errors and integrates noisy cues. We consider the mechanisms by which simple and forgetful units can organize to collectively generate dynamics on the long timescales required for such computations. We discuss the myriad potential uses of attractor dynamics for computation in the brain, and showcase notable examples of brain systems in which inherently low-dimensional continuous-attractor dynamics have been concretely and rigorously identified. Thus, it is now possible to conclusively state that the brain constructs and uses such systems for computation. Finally, we highlight recent theoretical advances in understanding how the fundamental trade-offs between robustness and capacity and between structure and flexibility can be overcome by reusing and recombining the same set of modular attractors for multiple functions, so they together produce representations that are structurally constrained and robust but exhibit high capacity and are flexible. Attractor network dynamics can support several computations performed by the brain. In their Review, Khona and Fiete introduce different attractor dynamics and their computational utility, describe evidence of attractor networks across the brain and explain how such networks could be recombined to increase their flexibility and versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐乐乐发布了新的文献求助10
刚刚
王白纸发布了新的文献求助10
2秒前
kingian完成签到,获得积分10
3秒前
爆米花应助玉玉采纳,获得10
3秒前
星辰大海应助文献多多看采纳,获得10
4秒前
英姑应助刘wt采纳,获得10
7秒前
8秒前
JamesPei应助124332采纳,获得10
8秒前
模糊中正应助小九采纳,获得10
9秒前
司南应助黄小慧采纳,获得10
9秒前
9秒前
wy完成签到,获得积分10
10秒前
科研通AI2S应助大气的谷梦采纳,获得10
10秒前
依依完成签到 ,获得积分10
12秒前
ztt1221完成签到,获得积分10
16秒前
an_yujin发布了新的文献求助10
16秒前
学药的小药童完成签到,获得积分10
17秒前
董H完成签到,获得积分10
17秒前
斯文败类应助星星之火采纳,获得10
17秒前
Alan完成签到,获得积分10
17秒前
珊珊4532完成签到 ,获得积分10
18秒前
与梦随行2011完成签到,获得积分10
18秒前
shunlibiye完成签到,获得积分10
18秒前
徐个愿吧发布了新的文献求助10
19秒前
iNk驳回了Hello应助
19秒前
劲秉应助hhg采纳,获得30
20秒前
21秒前
科研小白鼠完成签到 ,获得积分10
21秒前
小九完成签到,获得积分10
21秒前
王白纸完成签到,获得积分10
21秒前
22秒前
wanci应助ff采纳,获得10
22秒前
科研通AI2S应助研友_LOoomL采纳,获得10
23秒前
24秒前
三点水完成签到,获得积分10
25秒前
25秒前
NexusExplorer应助陶醉觅夏采纳,获得10
26秒前
26秒前
爆米花应助云_123采纳,获得10
26秒前
黄小慧完成签到,获得积分10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267121
求助须知:如何正确求助?哪些是违规求助? 2906683
关于积分的说明 8338959
捐赠科研通 2577302
什么是DOI,文献DOI怎么找? 1400850
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633872