Attractor and integrator networks in the brain

吸引子 计算机科学 稳健性(进化) 计算 积分器 模块化设计 集合(抽象数据类型) 简单(哲学) 理论计算机科学 数学 算法 数学分析 计算机网络 生物化学 哲学 带宽(计算) 认识论 基因 化学 程序设计语言 操作系统
作者
Mikail Khona,Ila Fiete
出处
期刊:Nature Reviews Neuroscience [Nature Portfolio]
卷期号:23 (12): 744-766 被引量:195
标识
DOI:10.1038/s41583-022-00642-0
摘要

In this Review, we describe the singular success of attractor neural network models in describing how the brain maintains persistent activity states for working memory, corrects errors and integrates noisy cues. We consider the mechanisms by which simple and forgetful units can organize to collectively generate dynamics on the long timescales required for such computations. We discuss the myriad potential uses of attractor dynamics for computation in the brain, and showcase notable examples of brain systems in which inherently low-dimensional continuous-attractor dynamics have been concretely and rigorously identified. Thus, it is now possible to conclusively state that the brain constructs and uses such systems for computation. Finally, we highlight recent theoretical advances in understanding how the fundamental trade-offs between robustness and capacity and between structure and flexibility can be overcome by reusing and recombining the same set of modular attractors for multiple functions, so they together produce representations that are structurally constrained and robust but exhibit high capacity and are flexible. Attractor network dynamics can support several computations performed by the brain. In their Review, Khona and Fiete introduce different attractor dynamics and their computational utility, describe evidence of attractor networks across the brain and explain how such networks could be recombined to increase their flexibility and versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的树叶完成签到,获得积分10
刚刚
1秒前
不宁不令完成签到,获得积分10
2秒前
圆滚滚完成签到,获得积分10
3秒前
4秒前
唐_完成签到,获得积分10
5秒前
桐桐应助彳亍而行采纳,获得10
5秒前
6秒前
qiqi发布了新的文献求助10
6秒前
7秒前
JUdy完成签到,获得积分10
8秒前
lll完成签到,获得积分10
9秒前
9秒前
9秒前
小艾完成签到,获得积分10
10秒前
英姑应助含糊采纳,获得10
10秒前
柒月小鱼完成签到 ,获得积分10
10秒前
奋斗雁山发布了新的文献求助10
10秒前
10秒前
11秒前
这样很OK发布了新的文献求助10
11秒前
tay完成签到,获得积分20
14秒前
韦谷兰发布了新的文献求助10
15秒前
QQQ发布了新的文献求助10
15秒前
Bio应助哈哈采纳,获得30
15秒前
16秒前
16秒前
kkmedici发布了新的文献求助30
16秒前
叮咚完成签到,获得积分10
17秒前
不想完成签到,获得积分10
17秒前
这样很OK完成签到,获得积分10
18秒前
GXWFDC完成签到,获得积分10
18秒前
西瓜汁完成签到,获得积分10
18秒前
Lisa完成签到,获得积分20
19秒前
含糊发布了新的文献求助10
20秒前
QQQ完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
情怀应助QQQ采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028