Multimodal Vaccine Distribution Network Design with Drones

无人机 冷链 极限(数学) 计算机科学 路径(计算) 继电器 分布(数学) 骨料(复合) 数学优化 运筹学 工程类 计算机网络 数学 数学分析 功率(物理) 遗传学 物理 量子力学 生物 机械工程 材料科学 复合材料
作者
Shakiba Enayati,Haitao Li,James F. Campbell,Deng Pan
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1069-1095 被引量:16
标识
DOI:10.1287/trsc.2023.1205
摘要

Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qazwsxedc发布了新的文献求助10
1秒前
嘚嘚发布了新的文献求助10
2秒前
魏1122完成签到,获得积分10
4秒前
Hello应助mark707采纳,获得10
6秒前
7秒前
8秒前
9秒前
嘚嘚完成签到,获得积分10
10秒前
李健的小迷弟应助Amy采纳,获得10
11秒前
13秒前
木瓜关注了科研通微信公众号
15秒前
葳蕤完成签到,获得积分10
15秒前
义气绿柳发布了新的文献求助10
16秒前
uu完成签到,获得积分10
17秒前
zzZephyr发布了新的文献求助10
19秒前
阿珩完成签到,获得积分10
19秒前
25秒前
义气绿柳完成签到,获得积分10
25秒前
25秒前
孤独的涵柳完成签到 ,获得积分10
28秒前
bbll完成签到,获得积分10
28秒前
34秒前
陈陈完成签到,获得积分10
36秒前
朴素的山蝶完成签到 ,获得积分10
38秒前
不知道完成签到,获得积分10
39秒前
39秒前
40秒前
王文豪发布了新的文献求助10
40秒前
英俊的铭应助天天开心采纳,获得10
41秒前
41秒前
突突突完成签到,获得积分10
41秒前
zho发布了新的文献求助10
44秒前
44秒前
Skywalker发布了新的文献求助10
45秒前
46秒前
科研通AI5应助和谐的蜡烛采纳,获得10
46秒前
CodeCraft应助DSUNNY采纳,获得10
47秒前
48秒前
Spring完成签到,获得积分10
51秒前
hhhblabla应助zzz采纳,获得10
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672255
求助须知:如何正确求助?哪些是违规求助? 3228627
关于积分的说明 9781302
捐赠科研通 2939114
什么是DOI,文献DOI怎么找? 1610553
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174