Development of a prediction-based scheduling control strategy with V2B mode for PV-building-EV integrated systems

光伏系统 可再生能源 按来源划分的电力成本 地铁列车时刻表 调度(生产过程) 计算机科学 能源消耗 汽车工程 可靠性工程 工程类 发电 功率(物理) 电气工程 运营管理 操作系统 物理 量子力学
作者
Jianing Luo,Yanping Yuan,Mahmood Mastani Joybari,Xiaoling Cao
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:224: 120237-120237 被引量:19
标识
DOI:10.1016/j.renene.2024.120237
摘要

Extending the energy boundary from the building-integrated photovoltaic to E-mobility is an effective alternative to further improve the integrated energy system performance. In this study, a new prediction-based scheduling control (PSC) strategy was developed considering vehicle-to-building mode for PV-building-EV integrated systems. The control strategies consisted of three components, model predictive control (MPC), simple operation mode, and schedule control. First, the MPC was based on the weather forecast, while the calculated daily renewable power generation and building energy consumption were used for mode selections. Second, the simple operation mode was based on system operation using conventional methods. Third, the developed scheduling control strategy was activated based on the periods of the day, involving different operating modes (e.g., V2B mode, renewable-to-building mode, etc.). Overall, the developed PSC can effectively improve energy performance and achieve cost savings. Validation tests were conducted for an office building, whose results showed higher renewable energy penetration and renewable power use efficiency at 9.56% and 30.48%, respectively. The levelized cost of energy (LCOE) values for building energy consumption and EV charging decreased to 0.4561 CNY/kWh and 0.6304 CNY/kWh, respectively. It indicated that the annual cost savings of building energy consumption and EV charging decreased by 16.5% and 42.7%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助lyyyy采纳,获得10
1秒前
大个应助兰陵笑笑生采纳,获得10
2秒前
cc完成签到,获得积分10
5秒前
7秒前
11秒前
xf发布了新的文献求助10
12秒前
reuslee发布了新的文献求助10
13秒前
14秒前
李心雨完成签到,获得积分10
15秒前
科研通AI2S应助wings采纳,获得10
16秒前
shiny发布了新的文献求助10
18秒前
无花果应助书太白采纳,获得10
19秒前
香蕉觅云应助炙热的若枫采纳,获得10
20秒前
大鱼完成签到,获得积分10
21秒前
酷波er应助shella采纳,获得10
22秒前
22秒前
23秒前
宁羽发布了新的文献求助10
24秒前
lyyyy发布了新的文献求助10
27秒前
超帅慕晴发布了新的文献求助10
27秒前
27秒前
北风完成签到,获得积分10
32秒前
xiaokai发布了新的文献求助10
32秒前
33秒前
宁羽完成签到,获得积分10
36秒前
书太白发布了新的文献求助10
37秒前
fafa发布了新的文献求助10
37秒前
Linda完成签到,获得积分10
39秒前
加菲丰丰举报量子星尘求助涉嫌违规
39秒前
Jasper应助水门采纳,获得10
39秒前
Hello应助尺素寸心采纳,获得10
41秒前
烟花应助那一片海采纳,获得10
43秒前
ding应助石沐沐采纳,获得10
44秒前
LYL完成签到,获得积分10
44秒前
45秒前
小马甲应助结实星星采纳,获得10
45秒前
46秒前
111关闭了111文献求助
46秒前
xf发布了新的文献求助10
48秒前
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673916
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785316
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611486
邀请新用户注册赠送积分活动 760931
科研通“疑难数据库(出版商)”最低求助积分说明 736344