Enhancement and inhibition of photocatalytic hydrogen production by fine piezoelectric potential tuning over piezo-photocatalyst

光催化 材料科学 压电 制氢 光催化分解水 纳米技术 分解水 化学工程 催化作用 复合材料 有机化学 化学 工程类
作者
Xinxin Jin,Xiao Li,Limin Dong,Bo Zhang,Dong Liu,Shaokai Hou,Yingshuang Zhang,Fengming Zhang,Bo Song
出处
期刊:Nano Energy [Elsevier]
卷期号:123: 109341-109341 被引量:24
标识
DOI:10.1016/j.nanoen.2024.109341
摘要

The combination of piezoelectric and catalytic functionalities is a burgeoning area aimed at enhancing energy and catalytic efficiency. However, the lack of comprehension regarding the mechanism through which piezoelectric potential (piezopotential) influences the enhancement or inhibition of photocatalytic hydrogen production has impeded the effective design of piezo-photocatalysts. Herein, a configured monofunctional-piezoelectric component/monofunctional-photocatalytic component type quartz/TiO2 composite catalyst as well as the hydrogen evolution experiment, COMSOL simulation, PFM, and electrochemical measurement was employed to discuss how the piezopotential changed with microstructures and its effect on electron-hole recombination, energy band, and the photocatalytic hydrogen production. Our findings reveal that the ultrasonic-driven piezoelectric effect in the quartz/TiO2 catalyst is significantly affected by the grain size of the piezoelectric component (quartz) and by the different sacrificial agents used in the multi-phase photocatalytic hydrogen production reaction. Overall, a stronger piezopotential inhibits the photocatalytic hydrogen production efficiency, while a suitable weaker piezopotential enhances hydrogen production. We propose a "piezopotential switch" mechanism to reveal these observations, validated by our experiments, providing new insights into the piezoelectric-photocatalytic coupling mechanism and guiding the precise semi-quantitative design of future advanced piezoelectric photocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的冰蓝完成签到,获得积分10
刚刚
法码完成签到,获得积分20
刚刚
wubinbin完成签到 ,获得积分10
1秒前
yuncong323发布了新的文献求助10
1秒前
神圣先知完成签到,获得积分10
2秒前
2秒前
1117完成签到 ,获得积分10
3秒前
法码发布了新的文献求助10
3秒前
白爪发布了新的文献求助10
4秒前
4秒前
三笠完成签到,获得积分20
5秒前
99完成签到,获得积分10
7秒前
by完成签到,获得积分20
7秒前
野原完成签到,获得积分10
7秒前
TT完成签到 ,获得积分10
8秒前
手帕很忙完成签到,获得积分10
8秒前
阿光完成签到,获得积分10
8秒前
猫好好完成签到,获得积分10
8秒前
沉默的若云完成签到,获得积分10
8秒前
蜂蜜完成签到,获得积分10
9秒前
afeiwoo完成签到,获得积分10
10秒前
Chen完成签到,获得积分20
10秒前
呱呱小蛙完成签到 ,获得积分10
11秒前
大个应助zzz采纳,获得10
12秒前
voifhpg完成签到 ,获得积分10
12秒前
Akim应助阿光采纳,获得10
13秒前
研友_LX7478完成签到,获得积分10
13秒前
13秒前
kean1943完成签到,获得积分10
13秒前
14秒前
无患子发布了新的文献求助10
14秒前
16秒前
16秒前
xrkxrk完成签到 ,获得积分0
16秒前
英姑应助榭纶雯皓南采纳,获得10
16秒前
17秒前
18秒前
azai发布了新的文献求助10
18秒前
大梦想家完成签到,获得积分20
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910