诺氟沙星
生物相容性
纳米材料
化学
药物输送
抗菌活性
化学工程
纳米颗粒
磁性纳米粒子
纳米技术
材料科学
核化学
有机化学
细菌
生物化学
环丙沙星
抗生素
生物
工程类
遗传学
作者
Wanling Cai,Wei Zhang,Zuliang Chen
标识
DOI:10.1016/j.colsurfb.2023.113170
摘要
Metal-organic frameworks (MOFs) have a high specific surface area and inherent biodegradability due to their unique structure and composition. As well, owing to the properties of nanomaterials and especially their magnetic features, Fe3O4 nanoparticles and MOFs composite materials have great potential in the design and application of drug release. The present work: firstly, investigated norfloxacin loading in magnetic metal organic framework (Fe3O4@ZIF-8); and secondly, studied the release of norfloxacin and its antibacterial activity. Results showed the release efficiencies reached 97 % at 310 K after 84 h (pH 7.4). Drug release behavior was tested at various pH levels and it was found that Fe3O4@ZIF-8 has pH-sensitive properties. Furthermore, the release model calculation illustrated that the release process fitted well to the Bhaskar model. The magnetic properties of Fe3O4@ZIF-8 confirmed that the composite has potential application for a targeted drug delivery system. The mechanism of pH-responsive norfloxacin release was combined with diffusion, ion exchange and electrostatic repulsion. Furthermore, the antibacterial activities of Fe3O4@ZIF-8 and NOR-Fe3O4@ZIF-8 were tested against Escherichia coli. Results showed that Fe3O4@ZIF-8 had good biocompatibility while NOR-Fe3O4@ZIF-8 can deter or inhibit the actions of microorganisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI