泄漏(经济)
甲烷
气流
护盾
机械
计算机模拟
材料科学
计算流体力学
环境科学
工程类
机械工程
地质学
化学
岩石学
物理
有机化学
经济
宏观经济学
作者
Jie He,Hehua Zhu,Xiangyang Wei,Rui Jin,Yaji Jiao,Mei Yin
标识
DOI:10.1007/s11709-023-0956-z
摘要
Abstract Tunnels constructed in gas-bearing strata are affected by the potential leakage of harmful gases, such as methane gas. Based on the basic principles of computational fluid dynamics, a numerical analysis was performed to simulate the ventilation and diffusion of harmful gases in a shield tunnel, and the effect of ventilation airflow speed on the diffusion of harmful gases was evaluated. As the airflow speed increased from 1.8 to 5.4 m/s, the methane emission was diluted, and the methane accumulation was only observed in the area near the methane leakage channels. The influence of increased ventilation airflow velocity was dominant for the ventilation modes with two and four fans. In addition, laboratory tests on methane leakage through segment joints were performed. The results show that the leakage process can be divided into “rapid leakage” and “slight leakage”, depending on the leakage pressure and the state of joint deformation. Based on the numerical and experimental analysis results, a relationship between the safety level and the joint deformation is established, which can be used as guidelines for maintaining utility tunnels.
科研通智能强力驱动
Strongly Powered by AbleSci AI