An improved sufficient dimension reduction-based Kriging modeling method for high-dimensional evaluation-expensive problems

克里金 降维 估计员 数学优化 超参数 足够的尺寸缩减 维数(图论) 计算机科学 数学 算法 还原(数学) 机器学习 统计 纯数学 几何学
作者
Zhouzhou Song,Liu Zhao,Hanyu Zhang,Ping Zhu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116544-116544 被引量:18
标识
DOI:10.1016/j.cma.2023.116544
摘要

Kriging is a powerful surrogate modeling method for the analysis and optimization of computationally expensive problems. However, the efficient construction of high-precision models for high-dimensional expensive problems is an important challenge for Kriging method and has received much attention recently. To address this challenge, we propose an improved sufficient dimension reduction-based Kriging modeling method (KISDR) for high-dimensional evaluation-expensive problems. First, the martingale difference divergence is introduced into the sufficient dimension reduction to obtain a more accurate and stable estimate of the projection matrix, which can project the high-dimensional inputs into a low-dimensional latent space while maintaining sufficient information for response prediction. Second, we propose to utilize the ladle estimator to identify the dimension of latent space. The ladle estimator combines both eigenvalues and eigenvectors of the matrix and can identify the latent dimensionality more precisely. After that, a new Kriging correlation function is constructed by integrating the information of dimension reduction into the correlation structure, which significantly reduces the number of hyperparameters to be estimated. Finally, we devise a local optimization approach to fine-tune the Kriging hyperparameters to further improve the modeling accuracy. In this study, six mathematical examples and three engineering examples with dimensions varying from 30-D to 100-D are employed for performance analysis and comparison. The results indicate that the proposed KISDR can precisely identify and exploit the low-dimensional linear structure in the data to improve modeling accuracy and efficiency for high-dimensional evaluation-expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lulu完成签到,获得积分10
1秒前
大佬发布了新的文献求助10
1秒前
叶立军发布了新的文献求助10
2秒前
wanci应助逝水无痕采纳,获得10
3秒前
沐沐完成签到,获得积分10
3秒前
zzzzzzz完成签到,获得积分10
3秒前
李lll发布了新的文献求助10
4秒前
4秒前
5秒前
田様应助过时的砖头采纳,获得10
6秒前
6秒前
在水一方应助zz采纳,获得10
7秒前
8秒前
木头鱼发布了新的文献求助10
9秒前
JamesPei应助重要的平文采纳,获得10
9秒前
10秒前
调研昵称发布了新的文献求助10
11秒前
haohao完成签到,获得积分20
11秒前
认真的马里奥应助yy采纳,获得10
12秒前
归尘发布了新的文献求助10
14秒前
李爱国应助zhen采纳,获得10
14秒前
miao发布了新的文献求助30
14秒前
SciGPT应助生壁采纳,获得10
16秒前
在水一方应助叶立军采纳,获得10
17秒前
顾矜应助想喝冰美采纳,获得10
17秒前
17秒前
重要的平文完成签到,获得积分10
18秒前
18秒前
19秒前
pluto应助阿晴采纳,获得100
20秒前
21秒前
21秒前
zhuxl应助大砍刀采纳,获得10
22秒前
22秒前
zz发布了新的文献求助10
23秒前
球闪发布了新的文献求助10
24秒前
Orange应助shuan采纳,获得30
25秒前
hao完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605