TCM syndrome classification using graph convolutional network

图形 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 理论计算机科学
作者
Shenghua Teng,Amin Fu,Weikai Lu,Changèn Zhou,Zuoyong Li
出处
期刊:European Journal of Integrative Medicine [Elsevier]
卷期号:62: 102288-102288 被引量:1
标识
DOI:10.1016/j.eujim.2023.102288
摘要

Traditional Chinese Medicine (TCM) diagnosis is a reasoning process through expert knowledge, in which syndrome classification is a key step for prescription recommendation and the treatment of patients. Doctors generally differentiate syndrome types according to patients' symptoms and state elements. This paper proposes a syndrome classification method based on graph convolutional network with residual structure, to exploit the potential relationship between symptoms and state elements. We constructed a graph convolutional network by combining symptoms and state elements for syndrome classification, called Symptoms-State elements Graph Convolutional Network (SSGCN), embedding the inherent logic of TCM diagnosis and treatment with a prescription graph. This graph architecture wherein contained the relationship between symptoms and state elements, and a multi-layer perceptron (MLP) was trained to classify different syndromes. Experiments were conducted on two self-built datasets according to two classic TCM books, i.e., Theories on Febrile Diseases and Traditional Chinese Medicine Prescription Dictionary. Accuracy, precision, recall and F1-score were adopted to evaluate the syndrome classificaiton results. Our proposed SSGCN method achieved accuracy of 75.59%, 69.63%, precision of 69.10%, 76.33%, recall of 75.63%, 66.67% and F1-score of 71.26%, 65.84% in the above two datasets, respectively. The proposed method for syndrome classification outperformed several popular methods including support vector machine, random forest, extreme gradient boosting and convolutional neural network. By constructing a prescription graph in which symptoms are used as nodes and state elements are taken into account for edges, graph convolution is implemted to capture the relationship of symptoms and state elements. This model improves the performance of syndrome classification and can be further extened for some other related applications in TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣的惜天完成签到 ,获得积分10
1秒前
王浩伟完成签到 ,获得积分10
7秒前
7秒前
Biofly526完成签到,获得积分10
9秒前
doubleshake发布了新的文献求助10
12秒前
开放的紫伊完成签到,获得积分10
15秒前
念姬完成签到,获得积分10
18秒前
充电宝应助啵啵只因采纳,获得10
22秒前
等待的大炮完成签到,获得积分10
29秒前
葫芦芦芦完成签到 ,获得积分10
36秒前
崔宁宁完成签到 ,获得积分10
42秒前
SciGPT应助Nn采纳,获得10
47秒前
笨蛋琪露诺完成签到,获得积分10
49秒前
马大翔应助科研通管家采纳,获得30
53秒前
chen完成签到 ,获得积分10
1分钟前
。。完成签到 ,获得积分10
1分钟前
赵田完成签到 ,获得积分10
1分钟前
她的城完成签到,获得积分0
1分钟前
南城雨落完成签到,获得积分10
1分钟前
song完成签到 ,获得积分10
1分钟前
spp完成签到 ,获得积分10
1分钟前
1分钟前
和谐续完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
lingshan完成签到 ,获得积分10
1分钟前
1分钟前
呆萌的小海豚完成签到,获得积分10
1分钟前
WUXIN完成签到,获得积分10
1分钟前
杰行天下完成签到,获得积分10
1分钟前
可耐的无剑完成签到 ,获得积分10
1分钟前
Ava应助端庄洪纲采纳,获得10
1分钟前
fang完成签到,获得积分10
1分钟前
陆浩学化学完成签到 ,获得积分10
1分钟前
zhaozhao完成签到,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
Lshyong完成签到 ,获得积分10
2分钟前
山复尔尔完成签到 ,获得积分10
2分钟前
端庄洪纲完成签到,获得积分10
2分钟前
彩色的冷梅完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784295
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010