Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation

热解 纤维素 热分解 激进的 材料科学 化学工程 复合数 化学 复合材料 有机化学 工程类
作者
Guanghao Qu,Shengtao Li
出处
期刊:Applied Energy [Elsevier]
卷期号:350: 121695-121695 被引量:6
标识
DOI:10.1016/j.apenergy.2023.121695
摘要

Cellulose-oil composite (COC) insulating materials are widely used in the transformer owing to their excellent physical and chemical properties. However, long-term thermal instability of these materials severely threatens the stable operation of transformer and power system. To reveal the atomic-level mechanisms responsible for pyrolysis and gas production in COCs, reactive molecular dynamics (RMD) simulations are performed, and calculation results are compared with data from dissolved and evolved gas tests of thermally decomposed materials. First, force field parameters and a molecular model optimization method based on the experimental data-driven strategy are introduced. It is verified that this method and force field offer significant advantages over the classical forms in the simulation of COC pyrolysis. Then, the new parameters and model are used to investigate the long-term pyrolysis and gas production processes in the COC. By constructing the molecular pathways for characteristic gases, namely, CH4, C2H4, and C2H2, it is found that the recombination of CH3•, •CH2•, and H• radicals, which decomposed from the COC, contributes to the formation of CH4 and C2H2, whereas C2H4 can be directly produced via COC decomposition. A higher pyrolysis temperature inhibits the recombination process of radicals and reduces the volume percentages (VPs) of CH4 and C2H2 but promotes the decomposition process and improves the VP of C2H4. This study not only provides insight into the gas production of COCs in transformer but also paves a way to understand long-term pyrolysis of any other materials using MD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yufanhui应助白小黑采纳,获得10
刚刚
刚刚
火火完成签到,获得积分10
刚刚
谷晋羽完成签到,获得积分10
1秒前
1秒前
1秒前
shenxun完成签到 ,获得积分10
1秒前
敬老院N号应助科研通管家采纳,获得30
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
IBMffff应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得150
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
3秒前
LL发布了新的文献求助10
3秒前
自然浩阑发布了新的文献求助10
3秒前
蓝桥兰灯完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
飞哥发布了新的文献求助10
6秒前
南境发布了新的文献求助10
8秒前
zhuiyu完成签到 ,获得积分10
8秒前
zzq发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
cbbb发布了新的文献求助10
9秒前
SciGPT应助ZHY2023采纳,获得10
11秒前
深情安青应助小小猪采纳,获得20
11秒前
11秒前
打打应助黑色的白鲸采纳,获得10
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847