Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation

热解 纤维素 热分解 激进的 材料科学 化学工程 复合数 化学 复合材料 有机化学 工程类
作者
Guanghao Qu,Shengtao Li
出处
期刊:Applied Energy [Elsevier]
卷期号:350: 121695-121695 被引量:6
标识
DOI:10.1016/j.apenergy.2023.121695
摘要

Cellulose-oil composite (COC) insulating materials are widely used in the transformer owing to their excellent physical and chemical properties. However, long-term thermal instability of these materials severely threatens the stable operation of transformer and power system. To reveal the atomic-level mechanisms responsible for pyrolysis and gas production in COCs, reactive molecular dynamics (RMD) simulations are performed, and calculation results are compared with data from dissolved and evolved gas tests of thermally decomposed materials. First, force field parameters and a molecular model optimization method based on the experimental data-driven strategy are introduced. It is verified that this method and force field offer significant advantages over the classical forms in the simulation of COC pyrolysis. Then, the new parameters and model are used to investigate the long-term pyrolysis and gas production processes in the COC. By constructing the molecular pathways for characteristic gases, namely, CH4, C2H4, and C2H2, it is found that the recombination of CH3•, •CH2•, and H• radicals, which decomposed from the COC, contributes to the formation of CH4 and C2H2, whereas C2H4 can be directly produced via COC decomposition. A higher pyrolysis temperature inhibits the recombination process of radicals and reduces the volume percentages (VPs) of CH4 and C2H2 but promotes the decomposition process and improves the VP of C2H4. This study not only provides insight into the gas production of COCs in transformer but also paves a way to understand long-term pyrolysis of any other materials using MD simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏大地发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
外向的如冰完成签到,获得积分10
2秒前
云鲲完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Flaghovell发布了新的文献求助10
2秒前
楠楠完成签到,获得积分10
3秒前
OhoOu发布了新的文献求助10
3秒前
3秒前
shanshan发布了新的文献求助10
4秒前
5秒前
YIYI完成签到,获得积分20
5秒前
wanci应助immm采纳,获得10
5秒前
JIAN关注了科研通微信公众号
6秒前
共享精神应助mole采纳,获得30
6秒前
6秒前
7秒前
7秒前
爆米花应助ClaudiaCY采纳,获得10
8秒前
9秒前
一壶古酒应助胖虎采纳,获得50
9秒前
大胆的一刀完成签到,获得积分10
10秒前
cjlumm发布了新的文献求助10
11秒前
贤惠的翰发布了新的文献求助10
12秒前
12秒前
12秒前
MC番薯发布了新的文献求助10
13秒前
www发布了新的文献求助10
13秒前
科研通AI2S应助旺旺采纳,获得10
14秒前
坚强的纸鹤完成签到,获得积分20
15秒前
Lucas应助土豪的醉香采纳,获得10
15秒前
PhDLi完成签到,获得积分10
15秒前
香蕉诗蕊举报jinggaier求助涉嫌违规
16秒前
斯文败类应助承一采纳,获得10
16秒前
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501