CT‐based volumetric measures obtained through deep learning: Association with biomarkers of neurodegeneration

痴呆 神经影像学 医学 磁共振成像 神经退行性变 队列 疾病 放射科 认知 病理 精神科
作者
Meera Srikrishna,Nicholas J. Ashton,Alexis Moscoso,Joana B. Pereira,Rolf A. Heckemann,Danielle van Westen,Giovanni Volpe,Joel Simrén,Anna Zettergren,Silke Kern,Lars‐Olof Wahlund,Bibek Gyanwali,Saima Hilal,Jenny Chong,Henrik Zetterberg,Kaj Blennow,Eric Westman,Christopher Chen,Ingmar Skoog,Michael Schöll
出处
期刊:Alzheimers & Dementia [Wiley]
标识
DOI:10.1002/alz.13445
摘要

Cranial computed tomography (CT) is an affordable and widely available imaging modality that is used to assess structural abnormalities, but not to quantify neurodegeneration. Previously we developed a deep-learning-based model that produced accurate and robust cranial CT tissue classification.We analyzed 917 CT and 744 magnetic resonance (MR) scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from participants of the Memory Clinic Cohort, Singapore. We tested associations between six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and imaging biomarkers, and measures of cognition.CTVMs differentiated cognitively healthy individuals from dementia and prodromal dementia patients with high accuracy levels comparable to MR-based measures. CTVMs were significantly associated with measures of cognition and biochemical markers of neurodegeneration.These findings suggest the potential future use of CT-based volumetric measures as an informative first-line examination tool for neurodegenerative disease diagnostics after further validation.Computed tomography (CT)-based volumetric measures can distinguish between patients with neurodegenerative disease and healthy controls, as well as between patients with prodromal dementia and controls. CT-based volumetric measures associate well with relevant cognitive, biochemical, and neuroimaging markers of neurodegenerative diseases. Model performance, in terms of brain tissue classification, was consistent across two cohorts of diverse nature. Intermodality agreement between our automated CT-based and established magnetic resonance (MR)-based image segmentations was stronger than the agreement between visual CT and MR imaging assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
balabala发布了新的文献求助10
刚刚
慕青应助123采纳,获得10
刚刚
蛇虫鼠蚁发布了新的文献求助10
2秒前
不安青牛举报绛绛求助涉嫌违规
3秒前
不安青牛应助鹿冶采纳,获得10
3秒前
善学以致用应助墨MOL采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
大模型应助华北第一深情采纳,获得20
6秒前
无情的笑萍完成签到,获得积分20
6秒前
7秒前
chen应助wanshuixiaowu173采纳,获得10
8秒前
pcx发布了新的文献求助10
9秒前
咩咩发布了新的文献求助10
9秒前
檬檬完成签到,获得积分10
10秒前
香蕉觅云应助笑弯了眼采纳,获得10
10秒前
阳光怀亦发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
代建成发布了新的文献求助10
13秒前
111完成签到,获得积分10
14秒前
16秒前
清爽的向秋完成签到 ,获得积分10
16秒前
MER完成签到 ,获得积分10
16秒前
FIN应助香蕉谷芹采纳,获得10
16秒前
UPT完成签到,获得积分10
16秒前
333完成签到,获得积分10
17秒前
zrr发布了新的文献求助10
17秒前
汉堡包应助妮妮采纳,获得10
17秒前
wanna完成签到,获得积分10
18秒前
花凉发布了新的文献求助10
18秒前
19秒前
归尘发布了新的文献求助20
19秒前
友好的向日葵完成签到,获得积分10
19秒前
zhongzhong发布了新的文献求助10
21秒前
forever完成签到,获得积分10
22秒前
basaker发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663