LEGAN: Addressing Intra-class Imbalance in GAN-based Medical Image Augmentation for Improved Imbalanced Data Classification

离群值 计算机科学 熵(时间箭头) 模式识别(心理学) 人工智能 仿射变换 样品(材料) 上下文图像分类 数据挖掘 机器学习 图像(数学) 数学 化学 物理 色谱法 量子力学 纯数学
作者
Hongwei Ding,Nana Huang,Yaoxin Wu,Xiaohui Cui
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2024.3396853
摘要

Currently, medical image classification is challenged by performance degradation due to imbalanced data. Balancing the data through sample augmentation proves to be an effective solution. However, traditional data augmentation methods and simple linear interpolation fall short in generating more diverse new samples, thereby limiting the enhancement of results with augmented data. Although Generative Adversarial Networks (GAN) models have the potential to generate more diverse samples, current GAN models struggle to effectively address the issue of intra-class mode collapse. In this research, we propose a GAN model structure named LEGAN, based on Local Outlier Factor (LOF) and information entropy, to address this problem. The LEGAN model focuses on resolving mode collapse caused by intra-class imbalances. Firstly, LOF is used to detect sparse and dense sample points in intra-class imbalance, and affine transformations are performed on sparse sample points to enhance the diversity of sample data and features. Then, we train LEGAN jointly using the augmented sparse samples and dense samples to effectively learn the sample distribution in sparse regions, thereby generating more diverse sparse samples. Secondly, we propose a decentralization constraint based on information entropy. This method measures the diversity of generated samples using information entropy during the training process and provides feedback to the generator, encouraging it to optimize towards better diversity. We conducted extensive experiments on three medical datasets, namely BloodMNIST, OrgancMNIST, and PathMNIST, demonstrating that LEGAN can achieve more diverse intra-class sample generation. The quality of the generated images and the classification performance are both significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默孤容发布了新的文献求助10
1秒前
阿豆阿豆发布了新的文献求助10
1秒前
何毅发布了新的文献求助10
2秒前
2秒前
清脆安南发布了新的文献求助10
3秒前
hsj完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
如意静芙发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
123456完成签到,获得积分10
7秒前
7秒前
7秒前
卢雅妮发布了新的文献求助10
8秒前
权蔺茹发布了新的文献求助10
9秒前
燕飞来完成签到,获得积分10
9秒前
9秒前
陈陈发布了新的文献求助10
10秒前
10秒前
爆米花应助luyang采纳,获得10
10秒前
10秒前
伈X完成签到,获得积分20
10秒前
司空笑白发布了新的文献求助10
11秒前
冰阔罗发布了新的文献求助10
11秒前
传奇3应助元宝团子采纳,获得10
11秒前
物理苟发布了新的文献求助10
13秒前
顺利完成签到,获得积分10
13秒前
幽默孤容完成签到,获得积分10
14秒前
orixero应助科研小白菜采纳,获得10
15秒前
陶l发布了新的文献求助10
15秒前
热情的幻丝完成签到,获得积分10
15秒前
15秒前
16秒前
西门明雪完成签到,获得积分10
16秒前
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469451
求助须知:如何正确求助?哪些是违规求助? 3062557
关于积分的说明 9079417
捐赠科研通 2752815
什么是DOI,文献DOI怎么找? 1510651
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697880