Enhancing the recrystallization resistance and strength-ductility trade-off of Al–Mg–Si–Cu–Mn alloys by three-step homogenization

再结晶(地质) 材料科学 均质化(气候) 冶金 延展性(地球科学) 蠕动 地质学 生物多样性 古生物学 生态学 生物
作者
S. Chen,Qipeng Dong,Fangzhen Liu,Zhen Li,Yong Yan,F. F. Wu,Hiromi Nagaumi
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:899: 146420-146420
标识
DOI:10.1016/j.msea.2024.146420
摘要

This study explores a three-step homogenization regime tailored to optimize the dispersoids precipitation, recrystallization resistance, and consequently, the mechanical performance of an Al–Mg–Si–Cu–Mn alloy. Comparative analyses against conventional one-step homogenization treatment reveal a substantial improvement in the precipitation of α-Al(Mn,Fe)Si dispersoids, with a 77.2% increase in number density and a 9.1% reduction in average size. This enhancement is attributed to the optimized nucleation kinetics achieved at an intermediate temperature during the three-step homogenization process. Samples subjected to one-step homogenization treatment experience complete recrystallization after a 1 h solution treatment at 560 °C, whereas three-step homogenized samples exhibit superior resistance to recrystallization, maintaining a well-preserved recovery structure. Pinning force analysis highlights the enhanced effectiveness of dispersoids obtained with the three-step homogenization treatment in inhibiting recrystallization. In terms of mechanical performance, samples underwent the three-step homogenization treatment demonstrate a synergistic enhancement in strength and ductility compared to the one-step homogenized sample. This enhancement is attributed to the intergranular fracture and low working hardening rate induced by the large recrystallized grains present in the samples treated with one-step homogenization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuzhihong完成签到,获得积分10
刚刚
1秒前
1秒前
Kevin发布了新的文献求助10
2秒前
隐形曼青应助孙波采纳,获得10
4秒前
TRY发布了新的文献求助10
4秒前
秋水发布了新的文献求助30
6秒前
6秒前
科研发布了新的文献求助10
6秒前
6秒前
7秒前
科研小白完成签到,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
丁浩伦应助大气的黑夜采纳,获得10
9秒前
蓝天应助大气的黑夜采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
leaolf应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
CR7应助科研通管家采纳,获得20
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
在水一方应助小李采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
xzn1123应助科研通管家采纳,获得10
10秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547536
求助须知:如何正确求助?哪些是违规求助? 3978400
关于积分的说明 12318973
捐赠科研通 3647008
什么是DOI,文献DOI怎么找? 2008488
邀请新用户注册赠送积分活动 1044026
科研通“疑难数据库(出版商)”最低求助积分说明 932617