Digital twin-driven assembly accuracy prediction method for high performance precision assembly of complex products

计算机科学 工程制图 工程类
作者
Yang Yi,Anqi Zhang,Xiaojun Liu,Di Jiang,Yi Lü,Bin Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102495-102495 被引量:6
标识
DOI:10.1016/j.aei.2024.102495
摘要

The high performance precision assembly (HPPA) of complex products such as aerospace, aircraft and high-end machine tool has demanding requirements for assembly accuracy. Achieving the accurate prediction of assembly accuracy for these complex products before assembling is the premise of improving the assembly quality and performance, and also has always been a challenge. Existing assembly accuracy prediction methods focus on acquiring the assembly deviation based on CAD model and manufacturing errors of parts, but rarely involve the multidimensional error coupling of parts and the influencing factors in the assembly process, which inevitably cause a certain gap between the prediction result and the actual condition, affecting the reliability of the prediction result. To address the above problems, this paper presents a digital twin (DT)-driven assembly accuracy prediction method for the HPPA of complex products. Firstly, this paper introduces the methodology overview and proposes an overall framework for DT-driven assembly accuracy prediction. Secondly, three key enabling technologies realizing the DT-driven assembly accuracy prediction, including the construction of part digital twin model, the generation of DT-based assembly process model, and assembly deviation propagation and accuracy analysis are introduced in detail. Finally, an application implementation of a prototype system and a case study involving a simplified satellite structure panel assembly process are used to verify the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Unicorn发布了新的文献求助10
1秒前
1秒前
Taoie发布了新的文献求助10
1秒前
852应助常乐的大宝剑采纳,获得10
1秒前
1秒前
大模型应助知性的刺猬采纳,获得10
2秒前
2秒前
心想事成发布了新的文献求助10
2秒前
3秒前
天天快乐应助耳东陈采纳,获得10
3秒前
鲤跃发布了新的文献求助10
3秒前
完美世界应助xzy采纳,获得10
3秒前
3秒前
qwe发布了新的文献求助30
3秒前
5秒前
袁宁宁静完成签到 ,获得积分10
5秒前
哈哈完成签到,获得积分10
5秒前
taotao完成签到,获得积分10
6秒前
hewd3发布了新的文献求助10
6秒前
小章鱼哇哈哈哈哈哈哈哈完成签到 ,获得积分10
6秒前
科研通AI6应助果糖不加糖采纳,获得10
6秒前
7秒前
尊敬的驳发布了新的文献求助10
7秒前
7秒前
Shinewei发布了新的文献求助10
7秒前
乐乐应助Unicorn采纳,获得10
9秒前
tent01完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
10秒前
慕青应助豆豆采纳,获得10
10秒前
刘密发布了新的文献求助10
10秒前
亚亚呀发布了新的文献求助30
11秒前
在水一方应助清爽灵萱采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得30
12秒前
萧萧应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940739
求助须知:如何正确求助?哪些是违规求助? 4206869
关于积分的说明 13075712
捐赠科研通 3985443
什么是DOI,文献DOI怎么找? 2182202
邀请新用户注册赠送积分活动 1197798
关于科研通互助平台的介绍 1110099