亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models

后门 计算机科学 图像(数学) 生成语法 人工智能 计算机视觉 理论计算机科学 计算机安全
作者
Jordan Vice,Naveed Akhtar,Richard Hartley,Ajmal Mian
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4865-4880 被引量:3
标识
DOI:10.1109/tifs.2024.3386058
摘要

The rise in popularity of text-to-image generative artificial intelligence (AI) has attracted widespread public interest. We demonstrate that this technology can be attacked to generate content that subtly manipulates its users. We propose a Backdoor Attack on text-to-image Generative Models (BAGM), which upon triggering, infuses the generated images with manipulative details that are naturally blended in the content. Our attack is the first to target three popular text-to-image generative models across three stages of the generative process by modifying the behaviour of the embedded tokenizer, the language model or the image generative model. Based on the penetration level, BAGM takes the form of a suite of attacks that are referred to as surface , shallow and deep attacks in this article. Given the existing gap within this domain, we also contribute a comprehensive set of quantitative metrics designed specifically for assessing the effectiveness of backdoor attacks on text-to-image models. The efficacy of BAGM is established by attacking state-of-the-art generative models, using a marketing scenario as the target domain. To that end, we contribute a dataset of branded product images. Our embedded backdoors increase the bias towards the target outputs by more than five times the usual, without compromising the model robustness or the generated content utility. By exposing generative AI's vulnerabilities, we encourage researchers to tackle these challenges and practitioners to exercise caution when using pre-trained models. Relevant code and input prompts can be found at https://github.com/JJ-Vice/BAGM, and the dataset is available at: https://ieee-dataport.org/documents/marketable-foods-mf-dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小赵完成签到,获得积分20
7秒前
7秒前
13秒前
梁朝伟发布了新的文献求助10
13秒前
微笑的井完成签到 ,获得积分10
15秒前
16秒前
wendyw完成签到,获得积分10
16秒前
ldj6670完成签到,获得积分10
19秒前
可爱的函函应助ll采纳,获得10
20秒前
21秒前
22秒前
qun完成签到,获得积分10
24秒前
义气的跳跳糖完成签到,获得积分20
27秒前
小泉发布了新的文献求助10
27秒前
成就丸子完成签到 ,获得积分10
28秒前
嘎嘎的鸡神完成签到,获得积分10
33秒前
张张完成签到 ,获得积分10
36秒前
Hello应助Emon采纳,获得10
37秒前
40秒前
春日奶黄包完成签到 ,获得积分10
41秒前
badada完成签到,获得积分10
41秒前
SKD完成签到 ,获得积分10
42秒前
乾坤侠客LW完成签到,获得积分10
43秒前
badada发布了新的文献求助10
44秒前
yyw完成签到 ,获得积分10
51秒前
57秒前
从容连虎完成签到,获得积分10
58秒前
1分钟前
小泉发布了新的文献求助10
1分钟前
六七完成签到,获得积分10
1分钟前
Jing完成签到 ,获得积分10
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
坚定的若枫完成签到,获得积分10
1分钟前
Hello应助111采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
梁朝伟发布了新的文献求助10
1分钟前
澄碧千顷完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964446
关于积分的说明 8613755
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953