BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models

后门 计算机科学 图像(数学) 生成语法 人工智能 计算机视觉 理论计算机科学 计算机安全
作者
Jordan Vice,Naveed Akhtar,Richard Hartley,Ajmal Mian
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4865-4880 被引量:3
标识
DOI:10.1109/tifs.2024.3386058
摘要

The rise in popularity of text-to-image generative artificial intelligence (AI) has attracted widespread public interest. We demonstrate that this technology can be attacked to generate content that subtly manipulates its users. We propose a Backdoor Attack on text-to-image Generative Models (BAGM), which upon triggering, infuses the generated images with manipulative details that are naturally blended in the content. Our attack is the first to target three popular text-to-image generative models across three stages of the generative process by modifying the behaviour of the embedded tokenizer, the language model or the image generative model. Based on the penetration level, BAGM takes the form of a suite of attacks that are referred to as surface , shallow and deep attacks in this article. Given the existing gap within this domain, we also contribute a comprehensive set of quantitative metrics designed specifically for assessing the effectiveness of backdoor attacks on text-to-image models. The efficacy of BAGM is established by attacking state-of-the-art generative models, using a marketing scenario as the target domain. To that end, we contribute a dataset of branded product images. Our embedded backdoors increase the bias towards the target outputs by more than five times the usual, without compromising the model robustness or the generated content utility. By exposing generative AI's vulnerabilities, we encourage researchers to tackle these challenges and practitioners to exercise caution when using pre-trained models. Relevant code and input prompts can be found at https://github.com/JJ-Vice/BAGM, and the dataset is available at: https://ieee-dataport.org/documents/marketable-foods-mf-dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lal发布了新的文献求助10
刚刚
解语花发布了新的文献求助30
刚刚
1秒前
吃的饭广泛应助KD采纳,获得10
2秒前
2秒前
蜗牛撵大象完成签到,获得积分10
3秒前
3秒前
3秒前
脑洞疼应助麦乐提采纳,获得10
3秒前
zhaoyuyuan发布了新的文献求助10
4秒前
小田睡不醒完成签到,获得积分10
6秒前
妍yan完成签到,获得积分10
6秒前
6秒前
7秒前
ldj6670发布了新的文献求助10
7秒前
钱仙人发布了新的文献求助10
7秒前
溯溯完成签到 ,获得积分10
8秒前
YouD发布了新的文献求助10
9秒前
在水一方应助rotator采纳,获得10
9秒前
9秒前
Orange应助丫丫采纳,获得10
10秒前
蒋宜颖发布了新的文献求助10
11秒前
科目三应助震动的又槐采纳,获得10
12秒前
合适一斩完成签到,获得积分10
13秒前
lal完成签到,获得积分10
13秒前
嘿嘿嘿发布了新的文献求助10
13秒前
zhaoyuyuan完成签到,获得积分10
14秒前
SYLH应助ZSH采纳,获得20
14秒前
15秒前
科研通AI5应助欧阳正义采纳,获得10
16秒前
不吃香菜发布了新的文献求助10
16秒前
wwwwrrrrr完成签到,获得积分10
18秒前
李健应助zm采纳,获得30
18秒前
20秒前
小蘑菇应助zhaoyuyuan采纳,获得10
22秒前
汉堡包应助情长不过时光采纳,获得10
22秒前
王含爽发布了新的文献求助10
22秒前
ding应助YouD采纳,获得10
23秒前
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498