An investigation on the alterations in Wnt signaling in ADHD across developmental stages

Wnt信号通路 生物 神经干细胞 诱导多能干细胞 信号转导 神经科学 干细胞 胚胎干细胞 细胞生物学 遗传学 基因
作者
Natalie Monet Walter,Cristine Marie Yde Ohki,Michelle Rickli,Lukasz Smigielski,Susanne Walitza,Edna Grünblatt
出处
期刊:Neuroscience applied [Elsevier]
卷期号:3: 104070-104070 被引量:3
标识
DOI:10.1016/j.nsa.2024.104070
摘要

The canonical Wnt signaling pathway plays a vital role in the developmental processes of the Central Nervous System throughout both prenatal and postnatal stages, as well as in maintaining homeostasis during adulthood. Its complex intracellular cascade involves the participation of key proteins (i.e., GSK3β and β-catenin) to activate the transcription of Wnt target genes. These genes subsequently control processes like cell proliferation, maturation, and the determination of cell fate. Previous studies suggest that this pathway can also be associated with Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder with multifactorial etiology. This study aimed to clarify if and at what developmental stage the Wnt pathway is altered in ADHD. Accordingly, we carried out proteomic and functional assessments of the Wnt pathway using Western Blot and reporter assays, respectively. These assessments were performed at the induced pluripotent stem cell (iPSC), neural stem cell (NSC), and neuronal phases. IPSCs were generated from somatic cells retrieved from 5 controls and 5 patients diagnosed with ADHD. As opposed to the developmental stage of iPSCs, ADHD NSCs showed alterations in the protein expression of both GSK3β and β-catenin, suggesting increased Wnt activity in the ADHD group. Moreover, Wnt reporter assays confirmed higher Wnt activity in ADHD NSCs. Our molecular findings in NSCs correlated with genetic predisposition to ADHD and clinical traits displayed by their respective donors. In conclusion, these results suggest that a crucial cellular pathway is disrupted in patient-specific NSCs, potentially explaining the developmental deficits clinically exhibited by ADHD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengkt777完成签到,获得积分20
刚刚
邹秋雨完成签到,获得积分10
1秒前
sw完成签到,获得积分10
1秒前
2秒前
2秒前
朴素的晓灵完成签到,获得积分20
2秒前
欢喜方盒完成签到,获得积分10
3秒前
猪猪hero应助多多采纳,获得20
3秒前
科研通AI6应助辛辛采纳,获得10
3秒前
轻松发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
害羞便当完成签到 ,获得积分10
6秒前
bkagyin应助哈机密南北撸多采纳,获得10
6秒前
Wu完成签到,获得积分10
6秒前
Lexi完成签到,获得积分20
7秒前
7秒前
邱乐乐发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
Nes发布了新的文献求助10
8秒前
大模型应助winwing采纳,获得30
8秒前
9秒前
9秒前
秀丽的小懒虫完成签到,获得积分10
9秒前
清明居士发布了新的文献求助10
10秒前
嘻嘻哈哈发布了新的文献求助10
10秒前
11秒前
Fortune发布了新的文献求助10
12秒前
12秒前
13秒前
sasa发布了新的文献求助10
13秒前
Lexi发布了新的文献求助10
13秒前
积极的凝云完成签到,获得积分10
13秒前
半夏发布了新的文献求助10
13秒前
月星发布了新的文献求助10
14秒前
睿力发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802