An investigation on the alterations in Wnt signaling in ADHD across developmental stages

Wnt信号通路 生物 神经干细胞 诱导多能干细胞 信号转导 神经科学 干细胞 胚胎干细胞 细胞生物学 遗传学 基因
作者
Natalie Monet Walter,Cristine Marie Yde Ohki,Michelle Rickli,Lukasz Smigielski,Susanne Walitza,Edna Grünblatt
出处
期刊:Neuroscience applied [Elsevier]
卷期号:3: 104070-104070 被引量:3
标识
DOI:10.1016/j.nsa.2024.104070
摘要

The canonical Wnt signaling pathway plays a vital role in the developmental processes of the Central Nervous System throughout both prenatal and postnatal stages, as well as in maintaining homeostasis during adulthood. Its complex intracellular cascade involves the participation of key proteins (i.e., GSK3β and β-catenin) to activate the transcription of Wnt target genes. These genes subsequently control processes like cell proliferation, maturation, and the determination of cell fate. Previous studies suggest that this pathway can also be associated with Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder with multifactorial etiology. This study aimed to clarify if and at what developmental stage the Wnt pathway is altered in ADHD. Accordingly, we carried out proteomic and functional assessments of the Wnt pathway using Western Blot and reporter assays, respectively. These assessments were performed at the induced pluripotent stem cell (iPSC), neural stem cell (NSC), and neuronal phases. IPSCs were generated from somatic cells retrieved from 5 controls and 5 patients diagnosed with ADHD. As opposed to the developmental stage of iPSCs, ADHD NSCs showed alterations in the protein expression of both GSK3β and β-catenin, suggesting increased Wnt activity in the ADHD group. Moreover, Wnt reporter assays confirmed higher Wnt activity in ADHD NSCs. Our molecular findings in NSCs correlated with genetic predisposition to ADHD and clinical traits displayed by their respective donors. In conclusion, these results suggest that a crucial cellular pathway is disrupted in patient-specific NSCs, potentially explaining the developmental deficits clinically exhibited by ADHD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助平常的羊采纳,获得30
1秒前
科研通AI5应助yangbo666采纳,获得10
1秒前
2秒前
爱吃猫的鱼完成签到 ,获得积分10
2秒前
128发布了新的文献求助10
2秒前
米粒发布了新的文献求助50
2秒前
2秒前
cc20231022完成签到,获得积分10
3秒前
阮梽珅完成签到,获得积分20
3秒前
QXR完成签到,获得积分10
3秒前
3秒前
QiongYin_123发布了新的文献求助10
4秒前
4秒前
慕青应助何大青采纳,获得10
4秒前
4秒前
华仔应助妮0001采纳,获得10
5秒前
Ava应助大G采纳,获得10
5秒前
Metrix应助失眠双双采纳,获得10
6秒前
6秒前
jianwuzhou发布了新的文献求助10
7秒前
7秒前
顾耷完成签到,获得积分10
8秒前
阮梽珅发布了新的文献求助20
8秒前
8秒前
9秒前
以玉名诗完成签到 ,获得积分10
9秒前
怡然自得发布了新的文献求助10
10秒前
zwenng发布了新的文献求助10
10秒前
聪明的破茧完成签到,获得积分10
10秒前
11秒前
joyi发布了新的文献求助10
12秒前
12秒前
13秒前
科研小狗发布了新的文献求助10
13秒前
Alex关注了科研通微信公众号
13秒前
小蘑菇发布了新的文献求助30
14秒前
14秒前
zam发布了新的文献求助10
15秒前
15秒前
研友_nv2r4n完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512154
求助须知:如何正确求助?哪些是违规求助? 3094640
关于积分的说明 9223918
捐赠科研通 2789445
什么是DOI,文献DOI怎么找? 1530691
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706513