已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Metabolic phenotyping with computed tomography deep learning for metabolic syndrome, osteoporosis and sarcopenia predicts mortality in adults

肌萎缩 医学 骨质疏松症 体质指数 代谢综合征 内科学 肥胖
作者
Sang Wouk Cho,Seungjin Baek,Sookyeong Han,Chang Oh Kim,Hyeon Chang Kim,Yumie Rhee,Namki Hong
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:15 (4): 1418-1429 被引量:3
标识
DOI:10.1002/jcsm.13487
摘要

Abstract Background Computed tomography (CT) body compositions reflect age‐related metabolic derangements. We aimed to develop a multi‐outcome deep learning model using CT multi‐level body composition parameters to detect metabolic syndrome (MS), osteoporosis and sarcopenia by identifying metabolic clusters simultaneously. We also investigated the prognostic value of metabolic phenotyping by CT model for long‐term mortality. Methods The derivation set ( n = 516; 75% train set, 25% internal test set) was constructed using age‐ and sex‐stratified random sampling from two community‐based cohorts. Data from participants in the individual health assessment programme ( n = 380) were used as the external test set 1. Semi‐automatic quantification of body compositions at multiple levels of abdominal CT scans was performed to train a multi‐layer perceptron (MLP)‐based multi‐label classification model. External test set 2 to test the prognostic value of the model output for mortality was built using data from individuals who underwent abdominal CT in a tertiary‐level institution ( n = 10 141). Results The mean ages of the derivation and external sets were 62.8 and 59.7 years, respectively, without difference in sex distribution (women 50%) or body mass index (BMI; 23.9 kg/m 2 ). Skeletal muscle density (SMD) and bone density (BD) showed a more linear decrement across age than skeletal muscle area. Alternatively, an increase in visceral fat area (VFA) was observed in both men and women. Hierarchical clustering based on multi‐level CT body composition parameters revealed three distinctive phenotype clusters: normal, MS and osteosarcopenia clusters. The L3 CT‐parameter‐based model, with or without clinical variables (age, sex and BMI), outperformed clinical model predictions of all outcomes (area under the receiver operating characteristic curve: MS, 0.76 vs. 0.55; osteoporosis, 0.90 vs. 0.79; sarcopenia, 0.85 vs. 0.81 in external test set 1; P < 0.05 for all). VFA contributed the most to the MS predictions, whereas SMD, BD and subcutaneous fat area were features of high importance for detecting osteoporosis and sarcopenia. In external test set 2 (mean age 63.5 years, women 79%; median follow‐up 4.9 years), a total of 907 individuals (8.9%) died during follow‐up. Among model‐predicted metabolic phenotypes, sarcopenia alone (adjusted hazard ratio [aHR] 1.55), MS + sarcopenia (aHR 1.65), osteoporosis + sarcopenia (aHR 1.83) and all three combined (aHR 1.87) remained robust predictors of mortality after adjustment for age, sex and comorbidities. Conclusions A CT body composition‐based MLP model detected MS, osteoporosis and sarcopenia simultaneously in community‐dwelling and hospitalized adults. Metabolic phenotypes predicted by the CT MLP model were associated with long‐term mortality, independent of covariates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
awu发布了新的文献求助10
1秒前
4秒前
包容诗槐完成签到,获得积分10
4秒前
科目三应助awu采纳,获得10
8秒前
11秒前
孔刚完成签到 ,获得积分10
12秒前
12秒前
cyan发布了新的文献求助10
19秒前
26秒前
jixuzhuixun发布了新的文献求助10
27秒前
胜胜糖完成签到 ,获得积分10
28秒前
stellazhuo完成签到,获得积分20
29秒前
张子捷发布了新的文献求助10
30秒前
慕青应助cyan采纳,获得10
36秒前
jixuzhuixun完成签到,获得积分10
36秒前
俏皮的雅绿完成签到 ,获得积分10
37秒前
杋困了完成签到 ,获得积分10
37秒前
38秒前
F少完成签到,获得积分20
41秒前
是猪猪呀完成签到,获得积分10
46秒前
脑洞疼应助F少采纳,获得10
46秒前
CipherSage应助科研通管家采纳,获得10
49秒前
赘婿应助科研通管家采纳,获得10
49秒前
FashionBoy应助科研通管家采纳,获得10
49秒前
杳鸢应助科研通管家采纳,获得10
49秒前
wanci应助科研通管家采纳,获得10
49秒前
dinghaifeng应助科研通管家采纳,获得10
49秒前
在水一方应助科研通管家采纳,获得10
49秒前
杳鸢应助科研通管家采纳,获得10
49秒前
困困困完成签到,获得积分10
50秒前
冷傲的帽子完成签到 ,获得积分10
50秒前
圣甲虫完成签到 ,获得积分10
51秒前
传奇3应助是猪猪呀采纳,获得10
51秒前
SXR完成签到,获得积分10
1分钟前
石一彤完成签到,获得积分10
1分钟前
888关闭了888文献求助
1分钟前
3262应助cjuntao采纳,获得30
1分钟前
1分钟前
CallitWYW完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397806
求助须知:如何正确求助?哪些是违规求助? 3006862
关于积分的说明 8823183
捐赠科研通 2694142
什么是DOI,文献DOI怎么找? 1475661
科研通“疑难数据库(出版商)”最低求助积分说明 682508
邀请新用户注册赠送积分活动 675940