Establishment of a diagnostic model of endometriosis based on disulfidptosis‐related genes

基因 接收机工作特性 计算生物学 免疫系统 医学 诊断模型 基因表达 支持向量机 基因表达谱 生物信息学 遗传学 生物 人工智能 免疫学 数据挖掘 计算机科学 内科学
作者
Hong-yan Shi,Caixia Zhou,Y Zhao
出处
期刊:Journal of Obstetrics and Gynaecology Research [Wiley]
卷期号:50 (7): 1201-1207
标识
DOI:10.1111/jog.15945
摘要

Abstract Objectives We aimed to establish a diagnostic model of endometriosis (EM) based on disulfidptosis‐related genes (DRGs). Materials and Methods The mRNA expression data of EM were downloaded from the gene expression omnibus database and subjected to differential analysis, and co‐expression analysis was performed based on 10 disulfidptosis genes to acquire DRGs. The differentially expressed DRGs were subjected to biofunctional analysis. Lasso analysis and support vector machine‐recursive feature elimination (SVM‐RFE) analysis were employed to extract the intersection of feature genes as biomarkers, and the diagnostic values of biomarkers for EM were evaluated based on receiver operating characteristic curves. The correlations between biomarkers and the immune microenvironment were assessed by Pearson analysis of biomarkers and immune cell infiltration levels. Results Transforming growth factor β stimulated protein clone 22 domain family member 4 (TSC22D4), and F‐box/SPRY domain‐containing protein 1 (FBXO45) worked as the diagnostic classifiers in EM, with an obvious decrease in FBXO45 expression and an evident increase in TSC22D4 expression. The areas under the curves of FBXO45 and TSC22D4 were 0.752 and 0.706, respectively, and the area of FBXO45 combined with TSC22D4 reached 0.865, suggesting that TSC22D4 and FBXO45 had high predictive values. The diagnostic markers were closely correlated with immune cell infiltration. Conclusion The diagnostic markers constructed based on disulfidptosis are good predictors for EM, which have close correlations with EM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧哈纳完成签到 ,获得积分10
刚刚
雷欧奥特曼完成签到,获得积分10
刚刚
个性的荆完成签到 ,获得积分10
刚刚
老迟到的访文完成签到,获得积分10
1秒前
浮游应助Queena采纳,获得10
2秒前
搜集达人应助刘铭晨采纳,获得10
2秒前
einuo完成签到,获得积分10
3秒前
善学以致用应助奋斗寻绿采纳,获得10
5秒前
5秒前
Who1990完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
8秒前
MrCoolWu完成签到,获得积分10
9秒前
9秒前
科研通AI6应助Winter采纳,获得10
10秒前
小柠檬完成签到,获得积分10
10秒前
jia完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
111发布了新的文献求助10
15秒前
清辉夜凝完成签到 ,获得积分10
16秒前
山水完成签到,获得积分10
16秒前
Brian完成签到,获得积分10
19秒前
夕荀完成签到,获得积分10
19秒前
赵yy完成签到,获得积分0
20秒前
用行舍藏完成签到,获得积分10
20秒前
wangji_2017完成签到,获得积分10
20秒前
Kitty完成签到,获得积分10
21秒前
22秒前
茉莉咪完成签到,获得积分20
23秒前
ggg完成签到 ,获得积分10
24秒前
叶问夏完成签到 ,获得积分10
25秒前
子非愚完成签到 ,获得积分10
26秒前
天晴完成签到,获得积分10
26秒前
热心的冬菱完成签到 ,获得积分10
27秒前
传奇3应助陆仓颉采纳,获得30
27秒前
苗苗完成签到,获得积分10
27秒前
幽默的太阳完成签到 ,获得积分10
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438915
求助须知:如何正确求助?哪些是违规求助? 4550092
关于积分的说明 14221652
捐赠科研通 4471002
什么是DOI,文献DOI怎么找? 2450107
邀请新用户注册赠送积分活动 1441080
关于科研通互助平台的介绍 1417655