Establishment of a diagnostic model of endometriosis based on disulfidptosis‐related genes

基因 接收机工作特性 计算生物学 免疫系统 医学 诊断模型 基因表达 支持向量机 基因表达谱 生物信息学 遗传学 生物 人工智能 免疫学 数据挖掘 计算机科学 内科学
作者
Hong-yan Shi,Caixia Zhou,Y Zhao
出处
期刊:Journal of Obstetrics and Gynaecology Research [Wiley]
卷期号:50 (7): 1201-1207
标识
DOI:10.1111/jog.15945
摘要

Abstract Objectives We aimed to establish a diagnostic model of endometriosis (EM) based on disulfidptosis‐related genes (DRGs). Materials and Methods The mRNA expression data of EM were downloaded from the gene expression omnibus database and subjected to differential analysis, and co‐expression analysis was performed based on 10 disulfidptosis genes to acquire DRGs. The differentially expressed DRGs were subjected to biofunctional analysis. Lasso analysis and support vector machine‐recursive feature elimination (SVM‐RFE) analysis were employed to extract the intersection of feature genes as biomarkers, and the diagnostic values of biomarkers for EM were evaluated based on receiver operating characteristic curves. The correlations between biomarkers and the immune microenvironment were assessed by Pearson analysis of biomarkers and immune cell infiltration levels. Results Transforming growth factor β stimulated protein clone 22 domain family member 4 (TSC22D4), and F‐box/SPRY domain‐containing protein 1 (FBXO45) worked as the diagnostic classifiers in EM, with an obvious decrease in FBXO45 expression and an evident increase in TSC22D4 expression. The areas under the curves of FBXO45 and TSC22D4 were 0.752 and 0.706, respectively, and the area of FBXO45 combined with TSC22D4 reached 0.865, suggesting that TSC22D4 and FBXO45 had high predictive values. The diagnostic markers were closely correlated with immune cell infiltration. Conclusion The diagnostic markers constructed based on disulfidptosis are good predictors for EM, which have close correlations with EM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lucas应助英勇羿采纳,获得30
2秒前
3秒前
满意白卉完成签到 ,获得积分10
4秒前
u9227发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
YXHTCM发布了新的文献求助10
8秒前
455完成签到,获得积分10
9秒前
9秒前
小鱼完成签到 ,获得积分10
12秒前
慕青应助菠萝披萨采纳,获得10
13秒前
九思发布了新的文献求助10
14秒前
林牧完成签到,获得积分10
16秒前
18秒前
大帅哥发布了新的文献求助10
22秒前
大个应助优美的南烟采纳,获得10
22秒前
spzdss发布了新的文献求助150
22秒前
懵懂的曼寒完成签到,获得积分10
26秒前
26秒前
无花果应助u9227采纳,获得10
26秒前
27秒前
黎明发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
浮游应助刘丹丹采纳,获得10
29秒前
Helio发布了新的文献求助10
32秒前
lzl17o8发布了新的文献求助10
32秒前
36秒前
霸气的半烟完成签到,获得积分20
36秒前
fisker完成签到,获得积分10
38秒前
39秒前
fzx完成签到,获得积分10
39秒前
lll发布了新的文献求助10
40秒前
43秒前
43秒前
黎明完成签到,获得积分10
44秒前
fisker发布了新的文献求助10
44秒前
自觉的枕头完成签到,获得积分10
44秒前
45秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986