数学
兰姆达
有界函数
维数(图论)
非线性系统
单位球
组合数学
单位(环理论)
数学物理
纯数学
数学分析
物理
量子力学
数学教育
作者
Thomas Bartsch,Sébastien de Valeriola
标识
DOI:10.1007/s00013-012-0468-x
摘要
We consider the problem $$\left\{\begin{array}{ll}-\Delta u - g(u) = \lambda u,\\ u \in H^1(\mathbb{R}^N), \int_{\mathbb{R}^N} u^2 = 1, \lambda \in \mathbb{R},\end{array}\right.$$ in dimension N ≥ 2. Here g is a superlinear, subcritical, possibly nonhomogeneous, odd nonlinearity. We deal with the case where the associated functional is not bounded below on the L 2-unit sphere, and we show the existence of infinitely many solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI