内质网
未折叠蛋白反应
神经保护
缺氧(环境)
内分泌学
前额叶皮质
神经科学
海马体
医学
内科学
生物
细胞生物学
化学
认知
有机化学
氧气
作者
Xiaohong Cai,Xiucui Li,Shengwei Jin,Dongshi Liang,Zhengwang Wen,Hongchao Cao,Hongfang Mei,Ying Wu,Zhongdong Lin,Liangxing Wang
标识
DOI:10.1016/j.expneurol.2014.04.029
摘要
Obstructive sleep apnea hypopnea syndrome (OSAHS) in children is associated with multiple system morbidities. Cognitive dysfunction as a result of central nervous system complication has been reported in children with OSAHS. However, the underlying mechanisms are poorly understood. Endoplasmic reticulum stress (ERS)-related apoptosis plays an important role in various diseases of the central nervous system, but very little is known about the role of ERS in mediating pathophysiological reactions to cognitive dysfunction in OSAHS. Chronic intermittent hypoxia (CIH) exposures, modeling OSAHS, across 2 and 4weeks in growing rats made more reference memory errors, working memory errors and total memory errors in the 8-Arm radial maze task, increased significantly TUNEL positive cells, upregulated the unfolded protein response in the hippocampus and prefrontal cortex as evidenced by increased phosphorylation of PKR-like endoplasmic reticulum kinase, inositol-requiring enzyme l and some downstream products. A selective inhibitor of eukaryotic initiation factor-2a dephosphorylation, salubrinal, prevented C/EBP-homologous protein activation in the hippocampus and prefrontal cortex throughout hypoxia/reoxygenation exposure. Our findings suggest that ERS mediated cell apoptosis may be one of the underlying mechanisms of cognitive dysfunction in OSAHS children. Further, a specific ERS inhibitor Salubrinal should be tested for neuroprotection against CIH-induced injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI