吸附
热重分析
吸附剂
热稳定性
化学工程
解吸
傅里叶变换红外光谱
材料科学
化学
有机化学
工程类
作者
Sunho Choi,McMahan L. Gray,Christopher W. Jones
出处
期刊:Chemsuschem
[Wiley]
日期:2011-05-05
卷期号:4 (5): 628-635
被引量:297
标识
DOI:10.1002/cssc.201000355
摘要
Abstract Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO 2 capture from ultra‐dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt % PEI (PEI/silica), and two new modified PEI‐based aminosilica adsorbents, derived from PEI modified with 3‐aminopropyltrimethoxysilane (A‐PEI/silica) or tetraethyl orthotitanate (T‐PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer‐oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO 2 adsorption capacities under conditions simulating ambient air (400 ppm CO 2 in inert gas), exceeding 2 mol kg sorbent −1 , as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption–desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO 2 from ultra‐dilute gas streams such as ambient air.
科研通智能强力驱动
Strongly Powered by AbleSci AI