Multi-view Clustering via Deep Matrix Factorization and Partition Alignment

分拆(数论) 计算机科学 矩阵分解 聚类分析 水准点(测量) 利用 非负矩阵分解 划分问题 数据挖掘 理论计算机科学 算法 人工智能 数学 特征向量 物理 组合数学 量子力学 计算机安全 大地测量学 地理
作者
Chen Zhang,Siwei Wang,Jiyuan Liu,Sihang Zhou,Pei Zhang,Xinwang Liu,En Zhu,Changwang Zhang
标识
DOI:10.1145/3474085.3475548
摘要

Multi-view clustering (MVC) has been extensively studied to collect multiple source information in recent years. One typical type of MVC methods is based on matrix factorization to effectively perform dimension reduction and clustering. However, the existing approaches can be further improved with following considerations: i) The current one-layer matrix factorization framework cannot fully exploit the useful data representations. ii) Most algorithms only focus on the shared information while ignore the view-specific structure leading to suboptimal solutions. iii) The partition level information has not been utilized in existing work. To solve the above issues, we propose a novel multi-view clustering algorithm via deep matrix decomposition and partition alignment. To be specific, the partition representations of each view are obtained through deep matrix decomposition, and then are jointly utilized with the optimal partition representation for fusing multi-view information. Finally, an alternating optimization algorithm is developed to solve the optimization problem with proven convergence. The comprehensive experimental results conducted on six benchmark multi-view datasets clearly demonstrates the effectiveness of the proposed algorithm against the SOTA methods. The code address for this algorithm is https://github.com/ZCtalk/MVC-DMF-PA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助不喜采纳,获得10
1秒前
alexyang发布了新的文献求助10
1秒前
2秒前
科研小白发布了新的文献求助10
3秒前
阿飞完成签到,获得积分10
4秒前
404NotFOUND完成签到,获得积分10
5秒前
6秒前
8秒前
FashionBoy应助上弦月采纳,获得10
9秒前
15秒前
稳重向南发布了新的文献求助10
16秒前
17秒前
19秒前
20秒前
CipherSage应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
23秒前
叶博完成签到,获得积分10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得30
23秒前
vdsvfb发布了新的文献求助10
23秒前
赘婿应助稳重向南采纳,获得10
24秒前
森宝发布了新的文献求助30
26秒前
Akim应助努力长胖的羊采纳,获得10
26秒前
alexyang发布了新的文献求助10
29秒前
研友_VZG7GZ应助瑞瑞刘采纳,获得10
35秒前
35秒前
努力长胖的羊完成签到,获得积分10
36秒前
彭于晏应助yjh采纳,获得10
36秒前
FashionBoy应助大大的寄吧采纳,获得10
40秒前
Halo完成签到,获得积分20
40秒前
40秒前
Zxc发布了新的文献求助10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539051
求助须知:如何正确求助?哪些是违规求助? 3973321
关于积分的说明 12308435
捐赠科研通 3640147
什么是DOI,文献DOI怎么找? 2004375
邀请新用户注册赠送积分活动 1039763
科研通“疑难数据库(出版商)”最低求助积分说明 928957