Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability

佩多:嘘 超级电容器 材料科学 电容 电极 复合材料 化学工程 聚合物 化学 工程类 物理化学
作者
Haishun Du,Miaomiao Zhang,Kun Liu,Mahesh Parit,Zhihua Jiang,Xinyu Zhang,Bin Li,Chuanling Si
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:428: 131994-131994 被引量:184
标识
DOI:10.1016/j.cej.2021.131994
摘要

PEDOT:PSS has been widely used as the electrode materials for supercapacitors. However, processing PEDOT:PSS bulk films with good flexibility and mechanical stability is still challenging. The present study is aimed at providing a facile and low-cost strategy for the preparation of mechanically strong and conductive PEDOT:PSS based bulk films by using Cellulose nanofibrils (CNF) as building blocks. PEDOT:PSS/CNF suspension was firstly prepared via a simple in situ polymerization process. Afterwards, flexible and conductive PEDOT:PSS/CNF nanopaper (PEDOT:PSS/CNP) were prepared from the PEDOT:PSS/CNF suspension by vacuum filtration and Dimethyl sulfoxide (DMSO) post-treatment. Results showed that the optimized PEDOT:PSS/CNP exhibited excellent flexibility, high tensile strength (72 MPa), and high electrical conductivity (66.67 S/cm). Finally, a symmetric supercapacitor was assembled using the PEDOT:PSS/CNP as electrodes. The assembled supercapacitor could deliver the maximum areal specific capacitance of 854.4 mF cm−2 (corresponding to 122.1F cm−3) at 5 mV/s and offer the highest areal energy density of 30.86 μWh cm−2 (corresponding to 4.41 mWh cm−3), which are among the highest values reported for PEDOT:PSS based supercapacitors. More importantly, the assembled supercapacitor showed remarkable cycling stability with the capacitance retention of 95.8% after 10,000 charge/discharge cycles. Considering the good mechanical properties and excellent electrochemical performance, the PEDOT:PSS/CNP could be a promising electrode material for flexible supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆子完成签到 ,获得积分10
1秒前
为你博弈完成签到,获得积分10
1秒前
1秒前
赘婿应助研友_ZG4ml8采纳,获得10
1秒前
Camellia完成签到,获得积分10
1秒前
2秒前
anan完成签到 ,获得积分10
3秒前
Ahha完成签到 ,获得积分10
3秒前
九花青完成签到,获得积分10
3秒前
猪8986发布了新的文献求助10
3秒前
完美世界应助小白龙采纳,获得10
4秒前
cty完成签到,获得积分10
4秒前
落雪慕卿颜完成签到,获得积分10
4秒前
4秒前
yaowenjun完成签到,获得积分10
4秒前
cyf完成签到 ,获得积分10
5秒前
一年级完成签到,获得积分10
5秒前
Fe2O3完成签到,获得积分10
6秒前
芋头读文献完成签到,获得积分10
6秒前
6秒前
Chenzza完成签到,获得积分10
6秒前
可靠的电源完成签到,获得积分10
7秒前
yhbk完成签到,获得积分10
7秒前
chenjun7080完成签到,获得积分10
7秒前
风信子完成签到,获得积分10
7秒前
Lucas应助小红采纳,获得10
8秒前
汤圆完成签到 ,获得积分10
8秒前
Ws完成签到,获得积分10
9秒前
十元完成签到,获得积分10
9秒前
一自文又欠完成签到,获得积分10
9秒前
penguin完成签到 ,获得积分10
10秒前
azai发布了新的文献求助10
10秒前
念芹完成签到,获得积分10
11秒前
jbear完成签到 ,获得积分10
11秒前
止山完成签到,获得积分10
11秒前
11秒前
12秒前
阿然完成签到,获得积分10
12秒前
12秒前
知行完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890