RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzj完成签到,获得积分10
刚刚
淡定身影完成签到,获得积分10
刚刚
1秒前
Owen应助还不如瞎写采纳,获得10
1秒前
半凡发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
石石刘完成签到 ,获得积分10
3秒前
顺利毕业完成签到,获得积分10
4秒前
端庄冷荷完成签到 ,获得积分10
4秒前
4秒前
haoliu完成签到,获得积分10
4秒前
4秒前
阳光完成签到,获得积分10
5秒前
小飞完成签到,获得积分20
6秒前
Zzz完成签到,获得积分10
6秒前
6秒前
6秒前
Akim应助TRISTE采纳,获得10
7秒前
7秒前
shentucc完成签到,获得积分20
7秒前
7秒前
8秒前
SY完成签到,获得积分10
8秒前
龙晴完成签到 ,获得积分10
9秒前
9秒前
10秒前
1234发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
所就欧克发布了新的文献求助10
11秒前
12秒前
瞳瞳爱吃巴斯克完成签到 ,获得积分10
13秒前
14秒前
月星发布了新的文献求助10
14秒前
赘婿应助赫连紫采纳,获得10
14秒前
14秒前
英吉利25发布了新的文献求助10
14秒前
爱学习的医学小白完成签到 ,获得积分10
15秒前
Fortune发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809