RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
骄傲慕尼黑完成签到,获得积分10
2秒前
Moonchild完成签到 ,获得积分10
4秒前
XXGG完成签到 ,获得积分10
4秒前
zhang5657发布了新的文献求助10
7秒前
嘻嘻我完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
闻屿完成签到,获得积分10
11秒前
唐Doctor完成签到,获得积分20
13秒前
背书强完成签到 ,获得积分10
15秒前
科研助理发布了新的文献求助10
15秒前
好困应助zhang5657采纳,获得10
16秒前
十月完成签到 ,获得积分10
16秒前
TGU的小马同学完成签到 ,获得积分10
18秒前
唐唐完成签到,获得积分10
20秒前
zhang5657完成签到,获得积分10
24秒前
as_eichi完成签到,获得积分10
26秒前
小美美完成签到 ,获得积分10
26秒前
alooof完成签到 ,获得积分10
27秒前
无花果应助gqw3505采纳,获得10
29秒前
小恐龙飞飞完成签到 ,获得积分10
30秒前
叶子完成签到 ,获得积分10
30秒前
古卡可可完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
36秒前
39秒前
折柳完成签到 ,获得积分10
43秒前
gqw3505发布了新的文献求助10
43秒前
lx完成签到,获得积分10
43秒前
凡华完成签到,获得积分10
43秒前
科研通AI6应助科研助理采纳,获得10
44秒前
糊涂的天思完成签到 ,获得积分10
45秒前
易水完成签到 ,获得积分10
46秒前
苗苗完成签到 ,获得积分10
46秒前
49秒前
49秒前
量子星尘发布了新的文献求助10
51秒前
无限的晓绿完成签到 ,获得积分10
51秒前
老北京发布了新的文献求助10
52秒前
乌特拉完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583396
关于积分的说明 14389385
捐赠科研通 4512650
什么是DOI,文献DOI怎么找? 2473151
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432839