RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zywzyw完成签到,获得积分10
刚刚
露露完成签到,获得积分10
刚刚
刚刚
1秒前
梁多杰完成签到,获得积分10
1秒前
科研狗完成签到,获得积分10
1秒前
马丝雨完成签到,获得积分10
2秒前
噫故完成签到,获得积分10
2秒前
xiaozaix完成签到,获得积分10
2秒前
清脆天空发布了新的文献求助10
2秒前
成梦完成签到,获得积分10
3秒前
orixero应助李多多采纳,获得10
4秒前
4秒前
4秒前
满意沅完成签到,获得积分10
4秒前
背后幻竹发布了新的文献求助10
4秒前
5秒前
Charming完成签到,获得积分10
5秒前
小二郎应助WW采纳,获得10
5秒前
Astral完成签到,获得积分10
6秒前
lj完成签到,获得积分10
6秒前
6秒前
6秒前
xxx完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
悲凉的雪珍完成签到 ,获得积分10
7秒前
顾矜应助cheong采纳,获得10
7秒前
盒子发布了新的文献求助10
7秒前
7秒前
yyer完成签到,获得积分10
7秒前
李男孩完成签到,获得积分20
8秒前
今后应助美丽的小姐采纳,获得10
8秒前
8秒前
张斯瑞完成签到,获得积分10
8秒前
jjj完成签到,获得积分20
8秒前
英俊的铭应助青柠采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330