RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙晓燕完成签到 ,获得积分10
2秒前
6秒前
唐泽雪穗发布了新的文献求助30
6秒前
xczhu完成签到,获得积分0
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Wayne完成签到 ,获得积分10
11秒前
忐忑的中心完成签到 ,获得积分10
12秒前
红糖订书机完成签到 ,获得积分10
17秒前
DD完成签到,获得积分10
17秒前
Lucas应助JUAN采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
娜娜完成签到 ,获得积分10
21秒前
YHBBZ完成签到 ,获得积分10
21秒前
窝窝头完成签到 ,获得积分10
26秒前
CipherSage应助lin采纳,获得10
30秒前
zhangj696完成签到,获得积分10
30秒前
JUAN完成签到,获得积分10
32秒前
yinyin完成签到 ,获得积分10
32秒前
现代期待完成签到,获得积分10
33秒前
37秒前
握瑾怀瑜完成签到 ,获得积分0
37秒前
weng完成签到,获得积分10
38秒前
wxh完成签到 ,获得积分10
43秒前
uouuo完成签到 ,获得积分10
45秒前
羊白玉完成签到 ,获得积分0
46秒前
缥缈的觅风完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
48秒前
apt完成签到 ,获得积分10
52秒前
apt完成签到 ,获得积分10
52秒前
天真的大船完成签到 ,获得积分10
53秒前
Beverly完成签到,获得积分10
56秒前
鹤昀完成签到 ,获得积分10
59秒前
萱棚完成签到 ,获得积分10
1分钟前
zxy应助唐泽雪穗采纳,获得30
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
yy完成签到,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333