RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桐炫完成签到,获得积分10
2秒前
白小施完成签到,获得积分10
3秒前
4秒前
来活发布了新的文献求助10
4秒前
5秒前
思源应助锵崽锵崽采纳,获得10
5秒前
5秒前
独特的忆彤完成签到 ,获得积分10
6秒前
7秒前
7秒前
康康完成签到,获得积分10
8秒前
8秒前
8秒前
小黄发布了新的文献求助10
9秒前
Outsider完成签到,获得积分10
9秒前
彩色冥幽发布了新的文献求助10
9秒前
废废言完成签到,获得积分10
10秒前
坚强亦丝应助研团团采纳,获得10
10秒前
星辰大海应助英勇明雪采纳,获得10
10秒前
ding应助没有昵称采纳,获得10
11秒前
11秒前
guobiao发布了新的文献求助10
11秒前
坚强亦丝应助黄晓杰2024采纳,获得10
11秒前
huang’完成签到,获得积分10
12秒前
乐观的水桃关注了科研通微信公众号
12秒前
爆米花应助Ying采纳,获得10
12秒前
清脆天空发布了新的文献求助10
12秒前
12秒前
ZC发布了新的文献求助10
13秒前
支翰完成签到 ,获得积分10
13秒前
15秒前
慕青应助扎菜采纳,获得10
16秒前
17秒前
猪猪hero发布了新的文献求助10
18秒前
18秒前
杳鸢应助辛勤的又夏采纳,获得30
18秒前
18秒前
18秒前
冬瓜完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879