Optical design of automotive augmented reality 3D head-up display with light-field rendering

计算机科学 增强现实 渲染(计算机图形) 平视显示器 汽车工业 计算机视觉 光场 计算机图形学(图像) 虚拟现实 人工智能 光学头戴式显示器 工程类 航空航天工程
作者
Jinho Lee,Igor Yanusik,Yoonsun Choi,Byongmin Kang,Chansol Hwang,Elena M. Malinovskaya,Juyong Park,Dongkyung Nam,Chanhee Lee,Chansu Kim,Tae-Hong Min,Sung‐Hoon Hong
标识
DOI:10.1117/12.2576660
摘要

Although head-up displays (HUDs) have already been installed in some commercial vehicles, their application to augmented reality (AR) is limited owing to the resulting narrow field of view (FoV) and fixed virtual-image distance. The matching of depth between AR information and real objects across wide FoVs is a key feature of AR HUDs to provide a safe driving experience. Meanwhile, current approaches based on the integration of two-plane virtual images and computer-generated holography suffer from problems such as partial depth control and high computational complexity, respectively, which makes them unsuitable for application in fast-moving vehicles. To bridge this gap, here, we propose a light-field-based 3D display technology with eye-tracking. We begin by matching the HUD optics with the light-field display view formation. First, we design mirrors to deliver high-quality virtual images with an FoV of 10 × 5° for a total eyebox size of 140 × 120 mm and compensate for the curved windshield shape. Next, we define the procedure to translate the driver eye position, obtained via eye-tracking, to the plane of the light-field display views. We further implement a lenticular-lens design and the corresponding sub-pixel-allocation-based rendering, for which we construct a simplified model to substitute for the freeform mirror optics. Finally, we present a prototyped device that affords the desired image quality, 3D image depth up to 100 m, and crosstalk level of <1.5%. Our findings indicate that such 3D HUDs can form the mainstream technology for AR HUDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VVzza完成签到,获得积分20
1秒前
usu发布了新的文献求助10
1秒前
hyx7735完成签到,获得积分10
1秒前
努力挪砖完成签到,获得积分10
1秒前
Jasper应助alex采纳,获得10
2秒前
白白嫩嫩发布了新的文献求助20
2秒前
2秒前
2秒前
Darlene发布了新的文献求助10
2秒前
3秒前
传奇3应助曹佳凝采纳,获得10
3秒前
纯真芙发布了新的文献求助10
3秒前
hahaagain发布了新的文献求助10
3秒前
clock完成签到 ,获得积分10
3秒前
guozizi发布了新的文献求助10
4秒前
VVzza发布了新的文献求助10
4秒前
5秒前
5秒前
HoldenX发布了新的文献求助10
5秒前
5秒前
medmh完成签到,获得积分10
5秒前
gyh完成签到,获得积分10
5秒前
5秒前
6秒前
夏天呀完成签到,获得积分10
6秒前
无花果应助謓言采纳,获得10
6秒前
无奈忆安发布了新的文献求助10
7秒前
大模型应助wsq采纳,获得10
7秒前
领导范儿应助刘德新采纳,获得10
7秒前
light123完成签到,获得积分10
7秒前
852应助GD采纳,获得10
7秒前
偶然发现的西柚完成签到 ,获得积分10
8秒前
8秒前
今天完成签到,获得积分10
8秒前
FashionBoy应助唠叨的剑通采纳,获得10
8秒前
9秒前
充电宝应助mumu采纳,获得10
9秒前
CC完成签到,获得积分20
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494