纳米技术
计算机科学
纳米材料
材料科学
接口(物质)
生化工程
风险分析(工程)
工程类
医学
最大气泡压力法
气泡
并行计算
作者
Aicheng Chen,Sanghamitra Chatterjee
摘要
A growing variety of sensors have increasingly significant impacts on everyday life. Key issues to take into consideration toward the integration of biosensing platforms include the demand for minimal costs and the potential for real time monitoring, particularly for point-of-care applications where simplicity must also be considered. In light of these developmental factors, electrochemical approaches are the most promising candidate technologies due to their simplicity, high sensitivity and specificity. The primary focus of this review is to highlight the utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms. Highly sensitive and precise nanomaterials based biosensors have opened up the possibility of creating novel technologies for the early-stage detection and diagnosis of disease related biomarkers. The attractive properties of nanomaterials have paved the way for the fabrication of a wide range of electrochemical sensors that exhibit improved analytical capacities. This review aims to provide insights into nanomaterials based electrochemical sensors and to illustrate their benefits in various key biomedical applications. This emerging discipline, at the interface of chemistry and the life sciences, offers a broad palette of opportunities for researchers with interests that encompass nanomaterials synthesis, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI