亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection

卷积神经网络 深度学习 计算机科学 人工智能 人工神经网络 机器学习 模式识别(心理学) 感知器
作者
Deegan Atha,Mohammad R. Jahanshahi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:17 (5): 1110-1128 被引量:289
标识
DOI:10.1177/1475921717737051
摘要

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幻想家姬别情完成签到,获得积分10
1秒前
高高发布了新的文献求助10
1秒前
mmyhn发布了新的文献求助200
4秒前
zho关闭了zho文献求助
7秒前
Akim应助儒雅香彤采纳,获得10
16秒前
zho关闭了zho文献求助
17秒前
moiumuio完成签到,获得积分10
20秒前
无花果应助cllcx采纳,获得10
22秒前
英俊的铭应助Vision820采纳,获得10
24秒前
艺术家完成签到,获得积分10
24秒前
zho关闭了zho文献求助
25秒前
Hqing完成签到 ,获得积分10
26秒前
yiyixt完成签到 ,获得积分10
33秒前
zho关闭了zho文献求助
35秒前
yu完成签到,获得积分10
42秒前
43秒前
yu发布了新的文献求助20
46秒前
zho关闭了zho文献求助
47秒前
Owen应助绿竹采纳,获得10
50秒前
cllcx发布了新的文献求助10
50秒前
繁荣的又夏完成签到,获得积分10
52秒前
willllll完成签到 ,获得积分10
52秒前
55秒前
xiaoxiong关注了科研通微信公众号
55秒前
cllcx完成签到,获得积分10
59秒前
59秒前
1分钟前
1分钟前
善良的白昼完成签到,获得积分10
1分钟前
咕咕咕发布了新的文献求助10
1分钟前
1分钟前
JamesPei应助优雅柏柳采纳,获得10
1分钟前
zhangst发布了新的文献求助10
1分钟前
1分钟前
1分钟前
02发布了新的文献求助10
1分钟前
1分钟前
咕咕咕完成签到,获得积分10
1分钟前
zho关闭了zho文献求助
1分钟前
1分钟前
高分求助中
All the Birds of the World 2000
Soviet Aid to the Third World: The Facts and Figures 500
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3716502
求助须知:如何正确求助?哪些是违规求助? 3263016
关于积分的说明 9927797
捐赠科研通 2977057
什么是DOI,文献DOI怎么找? 1632578
邀请新用户注册赠送积分活动 774605
科研通“疑难数据库(出版商)”最低求助积分说明 745056