化学
动力学
亚硫酸氢盐
电子顺磁共振
核化学
猝灭(荧光)
激进的
降级(电信)
零价铁
羟基自由基
化学动力学
反应速率常数
无机化学
荧光
生物化学
吸附
有机化学
电信
量子力学
基因表达
核磁共振
计算机科学
DNA甲基化
物理
基因
作者
Juanshan Du,Wanqian Guo,Huazhe Wang,Renli Yin,Heshan Zheng,Xiaochi Feng,Di Che,Nanqi Ren
出处
期刊:Water Research
[Elsevier]
日期:2017-12-22
卷期号:138: 323-332
被引量:264
标识
DOI:10.1016/j.watres.2017.12.046
摘要
In this study, batch experiments were carried out to investigate the key factors on sulfamethoxazole (SMX) removal kinetics in a new AOPs based on the combination of zero valent iron (Fe0) and bisulfite (S(IV)). With the increase of Fe0 from 0.25 mM to 5 mM, the removal rate of SMX was linearly increased in the Fe0/S(IV)/O2 system by accelerating the activation of S(IV) and Fe0 corrosion to accelerate. In the first 10 min of reaction, the increasing concentration of S(IV) inhibited SMX removal after since the high S(IV) concentration quenched reactive oxidative species (ROS). Then SMX removal rate was accelerated with the increase of S(IV) concentration after S(IV) were consumed up. The optimal ratio of S(IV) concentrations to Fe0 concentration for SMX removal in the Fe0/S(IV)/O2 system was 1:1. With SMX concentrations increasing from 1 to 50 μM, SMX removal rate was inhibited for the limitation of ROS yields. Although the presence of SO4− and OH was confirmed by electron paramagnetic resonance (EPR) spectrum, OH was identified as the dominant ROS in the Fe0/S(IV)/O2 system by chemical quenching experiments. Besides, strong inhibitive effects of 1,10-phenanthroline on SMX degradation kinetics by Fe0/S(IV)/O2 proved that the generation of ROS was rely on the release of Fe(II) and Fe(III). The generation of SO4− was ascribed to the activation of S(IV) by Fe(II)/Fe(III) recycling and the activation of HSO5− by Fe(II). And OH was simultaneously transformed from SO4− and generated by Fe0/O2. Density functional theory (DFT) calculation was conducted to reveal special reactive sites on SMX for radicals attacking and predicted intermediates. Finally, four possible SMX degradation pathways were accordingly proposed in the Fe0/S(IV)/O2 system based on experimental methods and DFT calculation.
科研通智能强力驱动
Strongly Powered by AbleSci AI