已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Maintaining the predictive abilities of near-infrared spectroscopy models for the determination of multi-parameters in White Paeony Root

芍药苷 主成分分析 计算机科学 生物系统 近红外光谱 预测建模 模式识别(心理学) 人工智能 化学 色谱法 机器学习 物理 光学 生物 高效液相色谱法
作者
Hui Ma,Yongbo Shao,Jiashan Chen,Danguang Pan,Leting Si,Xuesong Liu,Jun Wang,Yong Chen,Yongjiang Wu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:109: 103419-103419 被引量:4
标识
DOI:10.1016/j.infrared.2020.103419
摘要

Near-infrared spectroscopy (NIRs) has been widely applied in the field of traditional Chinese medicine (TCM). However, the quality of TCM inevitably changes with time and origin, which will result in a decline in the prediction accuracy of constructed NIR models. In this study, models of White Paeony Root were maintained to ensure the accuracy of the predictive values of new samples. The applicability of the original models to the new samples were validated by principal component analysis and model evaluation indexes. Chemometric methods including spectral subtraction correction (SSC) and hierarchical cluster analysis-recalibration (HCA-RC) were introduced to maintain the constructed models. The results demonstrated that, according to the performances of the models, the model maintenance ability of HCA-RC was stronger than that of SSC. With the application of HCA-RC, relative standard error of prediction of moisture, albiflorin and paeoniflorin content were reduced from 5.650%, 29.83% and 39.89% to 2.350%, 14.23% and 14.57%, respectively. This result revealed that HCA-RC could better extract common features from historical and new batches of samples. In addition, the updated HCA-RC models can still be applied for the rapid detection of White Paeony Root. Model maintenance ameliorated the problems of the original models that occurred after a period of application. The updated models contained the characteristics of new batches of samples, which had the potential for long-term continuous application and improved detection efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的绿蝶完成签到 ,获得积分10
1秒前
葛力完成签到,获得积分10
1秒前
1秒前
even完成签到 ,获得积分10
2秒前
VELPRO发布了新的文献求助10
4秒前
大大完成签到 ,获得积分10
4秒前
想游泳的鹰完成签到,获得积分10
4秒前
6秒前
高贵梦秋完成签到,获得积分10
7秒前
小小飞xxf完成签到 ,获得积分10
7秒前
zxcsdfa应助种地一代采纳,获得10
13秒前
儒雅的如松完成签到 ,获得积分10
14秒前
15秒前
18秒前
辛勤的剑成完成签到 ,获得积分10
18秒前
高挑的寒松完成签到 ,获得积分10
21秒前
老迟到的土豆完成签到 ,获得积分10
22秒前
欣欣子完成签到 ,获得积分10
22秒前
18746005898完成签到 ,获得积分10
23秒前
缺水哥完成签到,获得积分10
23秒前
楚楚完成签到 ,获得积分10
25秒前
执着的采枫完成签到 ,获得积分10
25秒前
吡咯爱成环应助苑阿宇采纳,获得10
25秒前
25秒前
小冯完成签到 ,获得积分10
26秒前
29秒前
我是老大应助平淡妙梦采纳,获得10
29秒前
大模型应助bnjb采纳,获得10
30秒前
31秒前
leave完成签到,获得积分10
32秒前
Antares发布了新的文献求助10
33秒前
汤汤完成签到 ,获得积分10
34秒前
哔噗哔噗完成签到 ,获得积分10
34秒前
35秒前
JamesPei应助三叔采纳,获得10
37秒前
37秒前
上官若男应助烂漫的易真采纳,获得30
38秒前
田様应助科研通管家采纳,获得10
38秒前
毛豆应助科研通管家采纳,获得10
38秒前
毛豆应助科研通管家采纳,获得10
38秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463516
求助须知:如何正确求助?哪些是违规求助? 3056862
关于积分的说明 9054494
捐赠科研通 2746825
什么是DOI,文献DOI怎么找? 1507063
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695897