Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport

电荷(物理) 兴奋剂 化学工程 带隙 光诱导电荷分离
作者
Abinash Das,Moumita Patra,Mathan Kumar P,Muthuraaman Bhagavathiachari,Ranjith G. Nair
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:263: 124431- 被引量:12
标识
DOI:10.1016/j.matchemphys.2021.124431
摘要

Abstract The field of ZnO based photocatalysis has seen a momentous leap in the past decade. However, the performance of pristine ZnO typically suffers from low photon absorption and high recombination of photoinduced charge carriers. Current work demonstrate that the development of well-crafted ZnO–In2O3 type II heterojunction can reduce the recombination rate and can boost the photon absorption ability simultaneously. The optimization of heterojunction was achieved by varying the composite ratio. The formation of heterojunction was confirmed through HRTEM analyses while the oxidation states of constituent elements were identified from the XPS study. The systematic photoelectrochemical study confirms the excellent interfacial electron-hole pair separation along with reduced charge transfer resistance through the interface of the heterojunction. The optimally designed ZnO–In2O3 heterojunction at 1:1 composite ratio exhibits an unprecedentedly high visible light active photocatalytic performance for the decomposition methylene blue than the other samples. The calculated rate constant of optimal photocatalyst was found to be 2.41, 2.52, and 1.76 times higher than the pristine ZnO under visible, solar, and under sonication mode respectively. In particular, current work displays a novel approach of exploring the role of composite ratio on ZnO–In2O3 type II heterojunction for improved photocatalysis through elevated photon absorption and effective charge carrier separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃完成签到,获得积分20
刚刚
刚刚
1秒前
1秒前
1秒前
sansan发布了新的文献求助10
1秒前
tassssadar完成签到,获得积分10
2秒前
2秒前
通辽小判官完成签到,获得积分10
3秒前
曲蔚然发布了新的文献求助30
4秒前
liuxl完成签到,获得积分10
4秒前
长隆完成签到 ,获得积分10
6秒前
6秒前
852应助YukiXu采纳,获得10
7秒前
7秒前
jijizz发布了新的文献求助10
7秒前
yyyyy发布了新的文献求助10
7秒前
zhappy发布了新的文献求助20
7秒前
8秒前
稳重的八宝粥完成签到 ,获得积分10
9秒前
9秒前
xx关闭了xx文献求助
9秒前
10秒前
12秒前
13秒前
su发布了新的文献求助10
13秒前
小马甲应助鳗鱼灵寒采纳,获得10
13秒前
calbee发布了新的文献求助10
14秒前
lalala发布了新的文献求助10
15秒前
15秒前
张辰12536完成签到,获得积分10
16秒前
17秒前
程琳发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
88完成签到,获得积分10
18秒前
我是站长才怪应助谭谨川采纳,获得10
18秒前
1233发布了新的文献求助10
19秒前
bismarck7完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808