DeepResGRU: Residual gated recurrent neural network-augmented Kalman filtering for speech enhancement and recognition

计算机科学 语音识别 可理解性(哲学) 字错误率 自回归模型 残余物 卡尔曼滤波器 语音增强 噪音(视频) 降噪 人工智能 算法 数学 统计 认识论 图像(数学) 哲学
作者
Nasir Saleem,Jiechao Gao,Muhammad Irfan Khattak,Hafiz Tayyab Rauf,Seifedine Kadry,Muhammad Shafi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107914-107914 被引量:25
标识
DOI:10.1016/j.knosys.2021.107914
摘要

With the recent research developments, deep learning models are powerful alternatives for speech enhancement and recognition in many real-world applications. Although state-of-the-art models achieve phenomenal results in terms of the background noise reduction, but the challenge is to design robust models for improving the quality, intelligibility, and word error rate. We propose a novel residual connection-based Bidirectional Gated Recurrent Unit (BiGRU) augmented Kalman filtering model for speech enhancement and recognition. In the proposed model, clean speech and noise signals are modeled as autoregressive process and the parameters are composed of linear prediction coefficients (LPCs) and driving noise variances. Recurrent neural networks are trained to estimate the line spectrum frequencies (LSFs) whereas an optimization problem is solved to attain noise variances such that to minimize the divergence between the modeled and predicted autoregressive spectrums of the noise contaminated speech. Augmented Kalman filtering with the estimated parameters are applied to the noisy speech for background noise reduction such that to improve the speech quality, intelligibility, and word error rates. Bidirectional GRUs network is implemented which predicts parameters both in the future and past contexts of the input sequence and outperform in terms of modeling the long-term dependencies. A compensated phase spectra is used to recover the enhanced speech signals. The Kaldi toolkit is employed to train the automatic speech recognition (ASR) system in order to measure the word error rates (WERs). By using the LibriSpeech dataset, the proposed model improved the quality, intelligibility, and word error rates by 35.52%, 18.79%, and 19.13%, respectively under various noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐蛋挞发布了新的文献求助10
1秒前
wsr发布了新的文献求助10
1秒前
独特的忆彤完成签到 ,获得积分10
2秒前
我只是个丙酮酸完成签到,获得积分10
2秒前
炙热的安柏完成签到,获得积分10
2秒前
2秒前
科研民工发布了新的文献求助10
3秒前
3秒前
HH发布了新的文献求助10
3秒前
热心市民小红花应助过儿采纳,获得10
3秒前
3秒前
4秒前
彭于晏应助无辜鞋子采纳,获得10
4秒前
冷静的肖恩完成签到 ,获得积分10
5秒前
5秒前
小赵发布了新的文献求助10
6秒前
热心市民小红花应助jideli采纳,获得10
7秒前
panx发布了新的文献求助10
7秒前
桃子发布了新的文献求助10
7秒前
NNNNN完成签到 ,获得积分10
7秒前
小狗软糖关注了科研通微信公众号
7秒前
Akim应助研友_Zl1w68采纳,获得30
8秒前
8秒前
8秒前
cl发布了新的文献求助10
8秒前
9秒前
10秒前
了晨完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
FashionBoy应助1234567采纳,获得10
11秒前
汉堡包应助kjdgahdg采纳,获得10
11秒前
宋鹏炜完成签到,获得积分20
13秒前
hhh发布了新的文献求助10
13秒前
吴所畏惧发布了新的文献求助10
13秒前
skskysky发布了新的文献求助10
14秒前
善学以致用应助guyu采纳,获得10
14秒前
陈玉玲发布了新的文献求助10
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074443
求助须知:如何正确求助?哪些是违规求助? 2727939
关于积分的说明 7501419
捐赠科研通 2376049
什么是DOI,文献DOI怎么找? 1259754
科研通“疑难数据库(出版商)”最低求助积分说明 610754
版权声明 597081