DeepResGRU: Residual gated recurrent neural network-augmented Kalman filtering for speech enhancement and recognition

计算机科学 语音识别 可理解性(哲学) 字错误率 自回归模型 残余物 卡尔曼滤波器 语音增强 噪音(视频) 降噪 人工智能 算法 数学 统计 认识论 图像(数学) 哲学
作者
Nasir Saleem,Jiechao Gao,Muhammad Irfan Khattak,Hafiz Tayyab Rauf,Seifedine Kadry,Muhammad Shafi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107914-107914 被引量:44
标识
DOI:10.1016/j.knosys.2021.107914
摘要

With the recent research developments, deep learning models are powerful alternatives for speech enhancement and recognition in many real-world applications. Although state-of-the-art models achieve phenomenal results in terms of the background noise reduction, but the challenge is to design robust models for improving the quality, intelligibility, and word error rate. We propose a novel residual connection-based Bidirectional Gated Recurrent Unit (BiGRU) augmented Kalman filtering model for speech enhancement and recognition. In the proposed model, clean speech and noise signals are modeled as autoregressive process and the parameters are composed of linear prediction coefficients (LPCs) and driving noise variances. Recurrent neural networks are trained to estimate the line spectrum frequencies (LSFs) whereas an optimization problem is solved to attain noise variances such that to minimize the divergence between the modeled and predicted autoregressive spectrums of the noise contaminated speech. Augmented Kalman filtering with the estimated parameters are applied to the noisy speech for background noise reduction such that to improve the speech quality, intelligibility, and word error rates. Bidirectional GRUs network is implemented which predicts parameters both in the future and past contexts of the input sequence and outperform in terms of modeling the long-term dependencies. A compensated phase spectra is used to recover the enhanced speech signals. The Kaldi toolkit is employed to train the automatic speech recognition (ASR) system in order to measure the word error rates (WERs). By using the LibriSpeech dataset, the proposed model improved the quality, intelligibility, and word error rates by 35.52%, 18.79%, and 19.13%, respectively under various noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助爱啥啥采纳,获得10
2秒前
砰砰发布了新的文献求助10
2秒前
2秒前
九次方发布了新的文献求助10
3秒前
3秒前
乐乐应助彩色的怀柔采纳,获得10
3秒前
sherry发布了新的文献求助10
3秒前
充电宝应助王kk采纳,获得50
3秒前
Anqiang完成签到,获得积分10
4秒前
外向的问寒完成签到,获得积分10
5秒前
斯文凡阳发布了新的文献求助10
5秒前
给我一篇文献吧完成签到 ,获得积分10
5秒前
duan完成签到,获得积分10
5秒前
6秒前
wyt完成签到,获得积分10
6秒前
只A不B应助石破天惊采纳,获得30
6秒前
Chairs完成签到,获得积分0
7秒前
夕荀发布了新的文献求助10
7秒前
诗瑜完成签到,获得积分10
7秒前
7秒前
8秒前
英姑应助务实采纳,获得10
8秒前
8秒前
阿星捌完成签到,获得积分10
9秒前
公西翠萱完成签到,获得积分10
9秒前
科研通AI6应助见山采纳,获得10
10秒前
UY发布了新的文献求助10
10秒前
333完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
谢序泽发布了新的文献求助10
11秒前
12秒前
12秒前
叶岐峰完成签到,获得积分10
12秒前
12秒前
Stella应助yuhong采纳,获得10
12秒前
12秒前
黄小黄完成签到,获得积分10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240