DeepResGRU: Residual gated recurrent neural network-augmented Kalman filtering for speech enhancement and recognition

计算机科学 语音识别 可理解性(哲学) 字错误率 自回归模型 残余物 卡尔曼滤波器 语音增强 噪音(视频) 降噪 人工智能 算法 数学 统计 认识论 图像(数学) 哲学
作者
Nasir Saleem,Jiechao Gao,Muhammad Irfan Khattak,Hafiz Tayyab Rauf,Seifedine Kadry,Muhammad Shafi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107914-107914 被引量:25
标识
DOI:10.1016/j.knosys.2021.107914
摘要

With the recent research developments, deep learning models are powerful alternatives for speech enhancement and recognition in many real-world applications. Although state-of-the-art models achieve phenomenal results in terms of the background noise reduction, but the challenge is to design robust models for improving the quality, intelligibility, and word error rate. We propose a novel residual connection-based Bidirectional Gated Recurrent Unit (BiGRU) augmented Kalman filtering model for speech enhancement and recognition. In the proposed model, clean speech and noise signals are modeled as autoregressive process and the parameters are composed of linear prediction coefficients (LPCs) and driving noise variances. Recurrent neural networks are trained to estimate the line spectrum frequencies (LSFs) whereas an optimization problem is solved to attain noise variances such that to minimize the divergence between the modeled and predicted autoregressive spectrums of the noise contaminated speech. Augmented Kalman filtering with the estimated parameters are applied to the noisy speech for background noise reduction such that to improve the speech quality, intelligibility, and word error rates. Bidirectional GRUs network is implemented which predicts parameters both in the future and past contexts of the input sequence and outperform in terms of modeling the long-term dependencies. A compensated phase spectra is used to recover the enhanced speech signals. The Kaldi toolkit is employed to train the automatic speech recognition (ASR) system in order to measure the word error rates (WERs). By using the LibriSpeech dataset, the proposed model improved the quality, intelligibility, and word error rates by 35.52%, 18.79%, and 19.13%, respectively under various noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
watermelon完成签到,获得积分10
刚刚
lalala完成签到,获得积分10
1秒前
1秒前
韵苑发布了新的文献求助10
1秒前
Oracle发布了新的文献求助10
4秒前
4秒前
Tonsil01发布了新的文献求助10
6秒前
宵夜完成签到,获得积分20
6秒前
韩野完成签到,获得积分10
6秒前
7秒前
李爱国应助niobium采纳,获得200
8秒前
8秒前
Ava应助歼击机88采纳,获得10
9秒前
无辜访彤发布了新的文献求助10
9秒前
10秒前
李呀完成签到,获得积分10
11秒前
fanqiaqia发布了新的文献求助10
11秒前
顺利的边牧完成签到 ,获得积分10
11秒前
繁荣的白亦完成签到 ,获得积分10
12秒前
做好梦了吗完成签到,获得积分20
12秒前
12秒前
没问题完成签到,获得积分10
12秒前
13秒前
LLL关注了科研通微信公众号
13秒前
韵苑完成签到,获得积分10
15秒前
孙红飞发布了新的文献求助10
15秒前
热情盼柳完成签到,获得积分10
15秒前
18秒前
18秒前
啦啦发布了新的文献求助10
18秒前
19秒前
香蕉觅云应助yanghaiyu采纳,获得10
20秒前
功不唐捐发布了新的文献求助10
21秒前
骰子完成签到,获得积分10
22秒前
星辰大海应助小路采纳,获得10
22秒前
22秒前
24秒前
24秒前
尔尔发布了新的文献求助10
25秒前
浮游应助是我呀吼采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263