已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate Detection of Bearing Faults Using Difference Visibility Graph and Bi-Directional Long Short-Term Memory Network Classifier

判别式 计算机科学 可见性图 模式识别(心理学) 故障检测与隔离 人工智能 振动 分类器(UML) 加速度计 方位(导航) 图形 数学 理论计算机科学 物理 正多边形 操作系统 执行机构 量子力学 几何学
作者
Sayanjit Singha Roy,Soumya Chatterjee,Saptarshi Roy,P. D. Bamane,Ashish Paramane,U. Mohan Rao,M. Tariq Nazir
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:58 (4): 4542-4551 被引量:16
标识
DOI:10.1109/tia.2022.3167658
摘要

This article proposes a novel bearing fault detection framework for the real-time condition monitoring of induction motors based on difference visibility graph (DVG) theory. In this regard, the vibration signals of healthy as well as different rolling bearing defects were acquired from both fan-end and drive-end accelerometers. These data were recorded for three different bearing defects and under four loading conditions. The acquired vibration time series were converted to a topological network using DVG. From the transformed vibration data in the graph domain, degree distribution (DD) was selected as feature to discriminate different fault networks. Using analysis of variance test and false discovery rate correction, most discriminative DD features were selected. These features were subsequently fed as inputs to a deep learning model, i.e., a bidirectional long short-term memory network classifier for fault classification. In this study, 112 classification problems have been addressed, and for all of them, the proposed approach delivered very high fault detection accuracy. Finally, the classification performance of the proposed framework is compared with other well-known deep-learning classifiers all of which delivered satisfactory results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
angel发布了新的文献求助10
1秒前
要减肥的胖子应助Dandy采纳,获得20
1秒前
氟锑酸完成签到 ,获得积分10
1秒前
ll完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
好看的花花鱼完成签到 ,获得积分10
3秒前
Someone发布了新的文献求助10
6秒前
8秒前
星空物语完成签到 ,获得积分10
8秒前
镜哥发布了新的文献求助10
9秒前
蓝胖子完成签到,获得积分10
9秒前
科研小白发布了新的文献求助10
9秒前
陈征完成签到,获得积分10
9秒前
球祝发布了新的文献求助10
10秒前
lhh7771117发布了新的文献求助10
10秒前
桐桐应助LBM采纳,获得10
11秒前
隐形曼青应助阳光豆芽采纳,获得10
11秒前
义气的代曼完成签到,获得积分10
12秒前
yali发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
受伤筝完成签到 ,获得积分10
18秒前
深情安青应助科研通管家采纳,获得10
19秒前
A_KAI应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
Novoa应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
成就凡双应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得30
19秒前
Hello应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得30
19秒前
20秒前
20秒前
20秒前
六六完成签到 ,获得积分10
21秒前
谦让溪流发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705395
求助须知:如何正确求助?哪些是违规求助? 5163352
关于积分的说明 15245053
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607656
邀请新用户注册赠送积分活动 1558822
关于科研通互助平台的介绍 1516347