Accurate Detection of Bearing Faults Using Difference Visibility Graph and Bi-Directional Long Short-Term Memory Network Classifier

判别式 计算机科学 可见性图 模式识别(心理学) 故障检测与隔离 人工智能 振动 分类器(UML) 加速度计 方位(导航) 图形 数学 理论计算机科学 物理 正多边形 操作系统 执行机构 量子力学 几何学
作者
Sayanjit Singha Roy,Soumya Chatterjee,Saptarshi Roy,P. D. Bamane,Ashish Paramane,U. Mohan Rao,M. Tariq Nazir
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:58 (4): 4542-4551 被引量:16
标识
DOI:10.1109/tia.2022.3167658
摘要

This article proposes a novel bearing fault detection framework for the real-time condition monitoring of induction motors based on difference visibility graph (DVG) theory. In this regard, the vibration signals of healthy as well as different rolling bearing defects were acquired from both fan-end and drive-end accelerometers. These data were recorded for three different bearing defects and under four loading conditions. The acquired vibration time series were converted to a topological network using DVG. From the transformed vibration data in the graph domain, degree distribution (DD) was selected as feature to discriminate different fault networks. Using analysis of variance test and false discovery rate correction, most discriminative DD features were selected. These features were subsequently fed as inputs to a deep learning model, i.e., a bidirectional long short-term memory network classifier for fault classification. In this study, 112 classification problems have been addressed, and for all of them, the proposed approach delivered very high fault detection accuracy. Finally, the classification performance of the proposed framework is compared with other well-known deep-learning classifiers all of which delivered satisfactory results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向以彤完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
lili应助Vicky采纳,获得30
2秒前
2秒前
李健应助念汐采纳,获得10
2秒前
坚定迎天完成签到,获得积分10
2秒前
2秒前
内向以彤发布了新的文献求助10
3秒前
bkagyin应助wangxiaoer采纳,获得10
3秒前
wwwww123发布了新的文献求助30
3秒前
科研通AI6应助li采纳,获得10
4秒前
Silence完成签到,获得积分10
4秒前
你真是那个啊完成签到,获得积分10
4秒前
科目三应助含蓄芷波采纳,获得10
4秒前
hino发布了新的文献求助10
4秒前
Simms发布了新的文献求助10
4秒前
5秒前
友人Y发布了新的文献求助10
5秒前
初识发布了新的文献求助10
5秒前
FLZLC发布了新的文献求助10
5秒前
6秒前
huoluosi发布了新的文献求助10
6秒前
刻苦丝袜发布了新的文献求助10
6秒前
6秒前
wkjfh举报会撒娇的高山求助涉嫌违规
6秒前
忆仙姿完成签到,获得积分10
7秒前
7秒前
笨笨的太清完成签到,获得积分10
7秒前
7秒前
cwj发布了新的文献求助10
8秒前
Lucas应助潇洒雁风采纳,获得10
8秒前
8秒前
lllxxx完成签到,获得积分10
8秒前
8秒前
科研通AI6应助Wvzzzzz采纳,获得10
9秒前
9秒前
9秒前
九里明完成签到,获得积分20
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401